Morphing the hyomandibular skeleton in development and evolution.

How might changes in developmental regulatory pathways underlie evolutionary changes in morphology? Here we focus on a particular pathway regulated by a secreted, signaling peptide, Endothelin1 (Edn1). Developmental genetic analyses show the Edn1-pathway to be crucial for hyomandibular patterning, and we discuss our work with zebrafish suggesting how the signal may function in regulating numbers of skeletal elements, their sizes and their shapes. We then review a broader collection of comparative studies that examine morphological evolution of a subset of the same skeletal elements-the opercular-branchiostegal series of bones of the hyoid arch. We find that phenotypic changes in zebrafish mutants copy evolutionary changes that recur along many actinopterygian lineages. Hence the developmental genetic studies are informative for providing candidate pathways for macroevolution of facial morphology, as well as for our understanding of how these pathways work.

[1]  Catherine A. Wilson,et al.  A pair of Sox: distinct and overlapping functions of zebrafish sox9 co-orthologs in craniofacial and pectoral fin development , 2005, Development.

[2]  E. S. Russell Form and Function: a Contribution to the History of Animal Morphology , 1916, Nature.

[3]  Y. Ouchi,et al.  Elevated blood pressure and craniofaclal abnormalities in mice deficient in endothelin-1 , 1994, Nature.

[4]  S. Carroll,et al.  Fossils, genes and the evolution of animal limbs , 1997, Nature.

[5]  J. Inoue,et al.  Major patterns of higher teleostean phylogenies: a new perspective based on 100 complete mitochondrial DNA sequences. , 2003, Molecular phylogenetics and evolution.

[6]  William Bateson,et al.  Materials for the study of variation , 1894 .

[7]  J. Helms,et al.  Hierarchy revealed in the specification of three skeletal fates by Sox9 and Runx2. , 2004, Developmental biology.

[8]  S. Carroll,et al.  From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design , 2000 .

[9]  J. C. Hombría,et al.  Beyond homeosis--HOX function in morphogenesis and organogenesis. , 2003, Differentiation; research in biological diversity.

[10]  C. Kimmel,et al.  Moz-dependent Hox expression controls segment-specific fate maps of skeletal precursors in the face , 2006, Development.

[11]  G. Levi,et al.  Endothelin-A receptor-dependent and -independent signaling pathways in establishing mandibular identity , 2004, Development.

[12]  L. Grande,et al.  A comprehensive phylogenetic study of amiid fishes (Amiidae) based on comparative skeletal anatomy : an empirical search for interconnected patterns of natural history , 1998 .

[13]  P. Lawrence The making of a fly , 1992 .

[14]  E. S. Russell Form and function : a contribution to the history of animal morphology / by E. S. Russell. , 1916 .

[15]  M. Pigliucci,et al.  Phenotypic Evolution: A Reaction Norm Perspective , 1998 .

[16]  C. Kimmel,et al.  Endothelin 1-mediated regulation of pharyngeal bone development in zebrafish , 2003, Development.

[17]  Catherine A. Wilson,et al.  Evolution and development of facial bone morphology in threespine sticklebacks. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[18]  J. Postlethwait,et al.  A zebrafish sox9 gene required for cartilage morphogenesis. , 2002, Development.

[19]  T. Schilling,et al.  Understanding endothelin-1 function during craniofacial development in the mouse and zebrafish. , 2004, Birth defects research. Part C, Embryo today : reviews.

[20]  C. Kimmel,et al.  moz regulates Hox expression and pharyngeal segmental identity in zebrafish , 2004, Development.

[21]  Thomas Lufkin,et al.  Specification of Jaw Subdivisions by Dlx Genes , 2002, Science.

[22]  M. Jollie Development of Head and Pectoral Girdle Skeleton and Scales in Acipenser , 1980 .

[23]  C. Kimmel,et al.  Two endothelin 1 effectors, hand2 and bapx1, pattern ventral pharyngeal cartilage and the jaw joint , 2003, Development.

[24]  R. Leduc,et al.  Processing of proendothelin‐1 by human furin convertase , 1995, FEBS letters.

[25]  C. Patterson The Contribution of Paleontology to Teleostean Phylogeny , 1977 .

[26]  L. Grande,et al.  Osteology and Phylogenetic Relationships of Fossil and Recent Paddlefishes (Polyodontidae) with Comments on the Interrelationships of Acipenseriformes , 1991 .

[27]  A. Tucker,et al.  Fgf and Bmp signals repress the expression of Bapx1 in the mandibular mesenchyme and control the position of the developing jaw joint. , 2004, Developmental biology.

[28]  P. Janvier,et al.  Jaw transformation with gain of symmetry after Dlx5/Dlx6 inactivation: Mirror of the past? , 2002, Genesis.

[29]  C. Kimmel,et al.  Zebrafish furin mutants reveal intricacies in regulating Endothelin1 signaling in craniofacial patterning. , 2006, Developmental biology.

[30]  C. Kimmel,et al.  Morpholino phenocopies of endothelin 1 (sucker) and other anterior arch class mutations , 2001, Genesis.

[31]  C. Kimmel,et al.  sucker encodes a zebrafish Endothelin-1 required for ventral pharyngeal arch development. , 2000, Development.

[32]  O. Pourquié,et al.  Coupling segmentation to axis formation , 2004, Development.

[33]  L. Grande,et al.  †Protopsephurus liui, a well-preserved primitive paddlefish (Acipenseriformes: Polyodontidae) from the Lower Cretaceous of China , 2002 .

[34]  A. Lassar,et al.  Nkx3.2/Bapx1 acts as a negative regulator of chondrocyte maturation , 2006, Development.

[35]  C. Kimmel,et al.  The shaping of pharyngeal cartilages during early development of the zebrafish. , 1998, Developmental biology.

[36]  Sir,et al.  The Development of the Vertebrate Skull , 1938, Nature.

[37]  Paula M. Mabee,et al.  Development of the cranium and paired fins in the zebrafish Danio rerio (Ostariophysi, Cyprinidae) , 1996, Journal of morphology.

[38]  L. Grande Chapter 5 – Interrelationships of Acipenseriformes, with Comments on “Chondrostei” , 1996 .

[39]  Michael P Hunter,et al.  Zebrafish hox paralogue group 2 genes function redundantly as selector genes to pattern the second pharyngeal arch. , 2002, Developmental biology.

[40]  Kazuo Tonami,et al.  Endothelin-1 regulates the dorsoventral branchial arch patterning in mice , 2004, Mechanisms of Development.

[41]  M. Depew,et al.  Reassessing the Dlx code: the genetic regulation of branchial arch skeletal pattern and development , 2005, Journal of anatomy.

[42]  C. Nüsslein-Volhard,et al.  Jaw and branchial arch mutants in zebrafish II: anterior arches and cartilage differentiation. , 1996, Development.

[43]  Katsumi Tsukamoto,et al.  Basal actinopterygian relationships: a mitogenomic perspective on the phylogeny of the "ancient fish". , 2003, Molecular phylogenetics and evolution.

[44]  C. Kimmel,et al.  Neural crest patterning and the evolution of the jaw , 2001, Journal of anatomy.

[45]  G. Lauder Feeding mechanics in primitive teleosts and in the halecomorph fish Amia calva , 2009 .

[46]  George V. Lauder,et al.  The evolution and interrelationships of the actinopterygian fishes , 1983 .