Correlated variables in regression: Clustering and sparse estimation

[1]  Peter Bühlmann,et al.  High-Dimensional Statistics with a View Toward Applications in Biology , 2014 .

[2]  Noah Simon,et al.  A Sparse-Group Lasso , 2013 .

[3]  S. Geer,et al.  The Lasso, correlated design, and improved oracle inequalities , 2011, 1107.0189.

[4]  Jian Huang,et al.  The Sparse Laplacian Shrinkage Estimator for High-Dimensional Regression. , 2011, Annals of statistics.

[5]  Thomas Lengauer,et al.  Classification with correlated features: unreliability of feature ranking and solutions , 2011, Bioinform..

[6]  Sara van de Geer,et al.  Statistics for High-Dimensional Data: Methods, Theory and Applications , 2011 .

[7]  Cun-Hui Zhang,et al.  Scaled sparse linear regression , 2011, 1104.4595.

[8]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[9]  R. Tibshirani,et al.  A note on the group lasso and a sparse group lasso , 2010, 1001.0736.

[10]  S. Geer,et al.  On the conditions used to prove oracle results for the Lasso , 2009, 0910.0722.

[11]  S. Geer,et al.  High-dimensional additive modeling , 2008, 0806.4115.

[12]  N. Meinshausen,et al.  LASSO-TYPE RECOVERY OF SPARSE REPRESENTATIONS FOR HIGH-DIMENSIONAL DATA , 2008, 0806.0145.

[13]  P. Bickel,et al.  SIMULTANEOUS ANALYSIS OF LASSO AND DANTZIG SELECTOR , 2008, 0801.1095.

[14]  H. Zou,et al.  One-step Sparse Estimates in Nonconcave Penalized Likelihood Models. , 2008, Annals of statistics.

[15]  Cun-Hui Zhang,et al.  The sparsity and bias of the Lasso selection in high-dimensional linear regression , 2008, 0808.0967.

[16]  H. Bondell,et al.  Simultaneous Regression Shrinkage, Variable Selection, and Supervised Clustering of Predictors with OSCAR , 2008, Biometrics.

[17]  Y. She Sparse regression with exact clustering , 2008 .

[18]  Nicolai Meinshausen,et al.  Relaxed Lasso , 2007, Comput. Stat. Data Anal..

[19]  H. Zou The Adaptive Lasso and Its Oracle Properties , 2006 .

[20]  Peng Zhao,et al.  On Model Selection Consistency of Lasso , 2006, J. Mach. Learn. Res..

[21]  D. Balding A tutorial on statistical methods for population association studies , 2006, Nature Reviews Genetics.

[22]  N. Meinshausen,et al.  High-dimensional graphs and variable selection with the Lasso , 2006, math/0608017.

[23]  M. Yuan,et al.  Model selection and estimation in regression with grouped variables , 2006 .

[24]  H. Bondell,et al.  Simultaneous regression shrinkage , variable selection and clustering of predictors with OSCAR , 2006 .

[25]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[26]  R. Shibata,et al.  PARTIAL CORRELATION AND CONDITIONAL CORRELATION AS MEASURES OF CONDITIONAL INDEPENDENCE , 2004 .

[27]  Peter Bühlmann,et al.  Finding predictive gene groups from microarray data , 2004 .

[28]  C. Carlson,et al.  Selecting a maximally informative set of single-nucleotide polymorphisms for association analyses using linkage disequilibrium. , 2004, American journal of human genetics.

[29]  Anja Vogler,et al.  An Introduction to Multivariate Statistical Analysis , 2004 .

[30]  Kam D. Dahlquist,et al.  Regression Approaches for Microarray Data Analysis , 2002, J. Comput. Biol..

[31]  S. Szarek,et al.  Chapter 8 - Local Operator Theory, Random Matrices and Banach Spaces , 2001 .

[32]  R. Tibshirani,et al.  Supervised harvesting of expression trees , 2001, Genome Biology.

[33]  Ash A. Alizadeh,et al.  'Gene shaving' as a method for identifying distinct sets of genes with similar expression patterns , 2000, Genome Biology.

[34]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[35]  Maurice G. Kendall,et al.  A course in multivariate analysis , 1958 .