RNA-responsive elements for eukaryotic translational control

[1]  G. Brewer,et al.  IRES-targeting small molecule inhibits enterovirus 71 replication via allosteric stabilization of a ternary complex , 2020, Nature Communications.

[2]  I. Bosch,et al.  Serotype-specific detection of dengue viruses in a nonstructural protein 1-based enzyme-linked immunosorbent assay validated with a multi-national cohort , 2020, PLoS neglected tropical diseases.

[3]  N. Grigorieff,et al.  mRNA stem-loops can pause the ribosome by hindering A-site tRNA binding , 2020, bioRxiv.

[4]  M. Farzan,et al.  A reversible RNA on-switch that controls gene expression of AAV-delivered therapeutics in vivo , 2019, Nature Biotechnology.

[5]  Peng Yin,et al.  De-Novo-Designed Translation-Repressing Riboregulators for Multi-Input Cellular Logic , 2019, Nature chemical biology.

[6]  Y. Harada,et al.  HCV IRES Captures an Actively Translating 80S Ribosome. , 2019, Molecular cell.

[7]  Niles A. Pierce,et al.  Conditional Guide RNAs: Programmable Conditional Regulation of CRISPR/Cas Function in Bacterial and Mammalian Cells via Dynamic RNA Nanotechnology , 2019, ACS central science.

[8]  Daniel G. Anderson,et al.  RNA Circularization Diminishes Immunogenicity and Can Extend Translation Duration In Vivo. , 2019, Molecular cell.

[9]  Allen P. Liu,et al.  A Novel Synthetic Toehold Switch for MicroRNA Detection in Mammalian Cells. , 2019, ACS synthetic biology.

[10]  S. Jaffrey,et al.  Highly efficient expression of circular RNA aptamers in cells using autocatalytic transcripts , 2019, Nature Biotechnology.

[11]  Ka-Hei Siu,et al.  Riboregulated toehold-gated gRNA for programmable CRISPR–Cas9 function , 2018, Nature Chemical Biology.

[12]  Jared E. Toettcher,et al.  Optogenetic regulation of engineered cellular metabolism for microbial chemical production , 2018, Nature.

[13]  S. Horner,et al.  A Fluorescent Cell-Based System for Imaging Zika Virus Infection in Real-Time , 2018, Viruses.

[14]  Daniel Olson,et al.  Rapid antigen tests for dengue virus serotypes and Zika virus in patient serum , 2017, Science Translational Medicine.

[15]  A. Ogawa,et al.  Artificial OFF-Riboswitches That Downregulate Internal Ribosome Entry without Hybridization Switches in a Eukaryotic Cell-Free Translation System. , 2017, ACS synthetic biology.

[16]  M. Farzan,et al.  Rational design of aptazyme riboswitches for efficient control of gene expression in mammalian cells , 2016, eLife.

[17]  Michele Felletti,et al.  Twister ribozymes as highly versatile expression platforms for artificial riboswitches , 2016, Nature Communications.

[18]  J. Murray,et al.  Structural characterization of ribosome recruitment and translocation by type IV IRES , 2016, eLife.

[19]  J. Kieft,et al.  A dynamic RNA loop in an IRES affects multiple steps of elongation factor-mediated translation initiation , 2015, eLife.

[20]  H. Noller,et al.  Initiation of Translation in Bacteria by a Structured Eukaryotic IRES RNA , 2015, Nature.

[21]  J. Collins,et al.  Toehold Switches: De-Novo-Designed Regulators of Gene Expression , 2014, Cell.

[22]  M. Jewett,et al.  Characterizing IGR IRES-mediated translation initiation for use in yeast cell-free protein synthesis. , 2014, New biotechnology.

[23]  G. Skavdis,et al.  Comparative analysis of internal ribosomal entry sites as molecular tools for bicistronic expression. , 2014, Journal of biotechnology.

[24]  M. Schnare,et al.  A simple and fast system for cloning influenza A virus gene segments into pHW2000- and pCAGGS-based vectors , 2013, Archives of Virology.

[25]  J. Muñoz-Jordán,et al.  Dengue Virus: Isolation, Propagation, Quantification, and Storage , 2012, Current protocols in microbiology.

[26]  O. Bensaude,et al.  Inhibiting eukaryotic transcription. Which compound to choose? How to evaluate its activity? , 2011, Transcription.

[27]  Jianyu Zhu,et al.  Crystal structures of complexes containing domains from two viral internal ribosome entry site (IRES) RNAs bound to the 70S ribosome , 2011, Proceedings of the National Academy of Sciences.

[28]  P. Yaswen,et al.  A Versatile Viral System for Expression and Depletion of Proteins in Mammalian Cells , 2009, PloS one.

[29]  N. Nakashima,et al.  Binding Mode of the First Aminoacyl-tRNA in Translation Initiation Mediated by Plautia stali Intestine Virus Internal Ribosome Entry Site* , 2007, Journal of Biological Chemistry.

[30]  P. Sarnow,et al.  Enterovirus 71 contains a type I IRES element that functions when eukaryotic initiation factor eIF4G is cleaved. , 2003, Virology.

[31]  Norihiro Shibuya,et al.  Structural elements in the internal ribosome entry site of Plautia stali intestine virus responsible for binding with ribosomes. , 2003, Nucleic acids research.

[32]  M. Niepmann,et al.  Interaction of Translation Initiation Factor eIF4B with the Poliovirus Internal Ribosome Entry Site , 2002, Journal of Virology.

[33]  Y. Kanamori,et al.  A tertiary structure model of the internal ribosome entry site (IRES) for methionine-independent initiation of translation. , 2001, RNA.

[34]  R. Webster,et al.  "Ambisense" approach for the generation of influenza A virus: vRNA and mRNA synthesis from one template. , 2000, Virology.

[35]  M. Nomura,et al.  RNA polymerase switch in transcription of yeast rDNA: role of transcription factor UAF (upstream activation factor) in silencing rDNA transcription by RNA polymerase II. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Y. Nogi,et al.  Multiprotein transcription factor UAF interacts with the upstream element of the yeast RNA polymerase I promoter and forms a stable preinitiation complex. , 1996, Genes & development.

[37]  V. Sandig,et al.  A phage T7 class-III promoter functions as a polymerase II promoter in mammalian cells. , 1993, Gene.