Molecular dynamics simulations of a lipid bilayer and of hexadecane: an investigation of membrane fluidity.

Molecular dynamics simulations of a fluid-phase dipalmitoyl phosphatidylcholine lipid bilayer in water and of neat hexadecane are reported and compared with nuclear magnetic resonance spin-lattice relaxation and quasi-elastic neutron scattering data. On the 100-picosecond time scale of the present simulations, there is effectively no difference in the reorientational dynamics of the carbons in the membrane interior and in pure hexadecane. Given that the calculated fast reorientational correlation times and the "microscopic" lateral diffusion of the lipids show excellent agreement with the experimental results, it is concluded that the apparently high viscosity of the membrane is more closely related to molecular interactions on the surface rather than in the interior.

[1]  D. F. Bocian,et al.  NMR Studies of Membrane Structure and Dynamics , 1978 .

[2]  J J Wendoloski,et al.  Molecular dynamics simulation of a phospholipid micelle. , 1989, Science.

[3]  J. Seelig,et al.  Deuterium order parameters in relation to thermodynamic properties of a phospholiped bilayer. A statistical mechanical interpretation. , 1975, Biochemistry.

[4]  M. Klein,et al.  Shape fluctuations in ionic micelles , 1989 .

[5]  K. Schulten,et al.  Molecular dynamics simulation of a bilayer of 200 lipids in the gel and in the liquid crystal phase , 1993 .

[6]  R M Venable,et al.  Model for the structure of the lipid bilayer. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[7]  P. Saffman,et al.  Brownian motion in biological membranes. , 1975, Proceedings of the National Academy of Sciences of the United States of America.

[8]  B. Hughes,et al.  Extraction of membrane microviscosity from translational and rotational diffusion coefficients. , 1982, Biophysical journal.

[9]  Martin Karplus,et al.  A simulation based model of NMR T1 relaxation in lipid bilayer vesicles , 1988 .

[10]  T. Fischer Bending stiffness of lipid bilayers. I. Bilayer couple or single-layer bending? , 1992, Biophysical journal.

[11]  K V Damodaran,et al.  Structure and dynamics of the dilauroylphosphatidylethanolamine lipid bilayer. , 1992, Biochemistry.

[12]  M. F. Brown,et al.  Theory of spin‐lattice relaxation in lipid bilayers and biological membranes. Dipolar relaxation , 1984 .

[13]  H. Berendsen,et al.  Molecular dynamics simulation of a smectic liquid crystal with atomic detail , 1988 .

[14]  Martin Karplus,et al.  Brownian dynamics simulation of a lipid chain in a membrane bilayer , 1988 .

[15]  H De Loof,et al.  Mean field stochastic boundary molecular dynamics simulation of a phospholipid in a membrane. , 1991, Biochemistry.

[16]  J. Seelig,et al.  The dynamic structure of fatty acyl chains in a phospholipid bilayer measured by deuterium magnetic resonance. , 1974, Biochemistry.

[17]  P. Meier,et al.  Proton spin relaxation dispersion studies of phospholipid membranes , 1988 .

[18]  S. Marčelja,et al.  Chain ordering in liquid crystals. II. Structure of bilayer membranes. , 1974, Biochimica et biophysica acta.

[19]  Keith B. Ward,et al.  Simulations of lipid crystals: Characterization of potential energy functions and parameters for lecithin molecules , 1991 .

[20]  W. Vaz,et al.  Microscopic versus macroscopic diffusion in one-component fluid phase lipid bilayer membranes. , 1991, Biophysical journal.

[21]  Bo Jönsson,et al.  Molecular dynamics simulations of a sodium octanoate micelle in aqueous solution , 1986 .