Novel Plasmonic Nanocavities for Optical Trapping‐Assisted Biosensing Applications

[1]  A. Kildishev,et al.  High-Resolution Large-Ensemble Nanoparticle Trapping with Multifunctional Thermoplasmonic Nanohole Metasurface. , 2018, ACS nano.

[2]  S. Cabrini,et al.  Multiple Optical Trapping by Means of Diffractive Optical Elements , 2003, Digest of Papers Microprocesses and Nanotechnology 2003. 2003 International Microprocesses and Nanotechnology Conference.

[3]  C. Min,et al.  Dynamic plasmonic nano-traps for single molecule surface-enhanced Raman scattering. , 2017, Nanoscale.

[4]  T. David,et al.  Si1-xGex nanoantennas with a tailored Raman response and light-to-heat conversion for advanced sensing applications. , 2019, Nanoscale.

[5]  P W Smith,et al.  Use of a liquid suspension of dielectric spheres as an artificial Kerr medium. , 1982, Optics letters.

[6]  Alemayehu Nana Koya,et al.  Bonding and charge transfer plasmons of conductively bridged nanoparticles: The effects of junction conductance and nanoparticle morphology , 2016 .

[7]  Steven M. Block,et al.  Optical trapping of metallic Rayleigh particles. , 1994, Optics letters.

[8]  Reuven Gordon,et al.  Optical trapping of a single protein. , 2012, Nano letters.

[9]  Yi Li,et al.  Enhanced optical trapping and arrangement of nano-objects in a plasmonic nanocavity. , 2012, Nano letters.

[10]  S. Maier Plasmonics: Fundamentals and Applications , 2007 .

[11]  H. Rigneault,et al.  Nanoscale volume confinement and fluorescence enhancement with double nanohole aperture , 2015, Scientific Reports.

[12]  Mengjing Hou,et al.  Nanogap effects on near- and far-field plasmonic behaviors of metallic nanoparticle dimers. , 2015, Physical chemistry chemical physics : PCCP.

[13]  Stefan A. Maier,et al.  Effective Mode Volume of Nanoscale Plasmon Cavities , 2006 .

[14]  D. Cojoc,et al.  Dynamics of Strongly Coupled Hybrid States by Transient Absorption Spectroscopy , 2018, Advanced Functional Materials.

[15]  Han-Kyu Choi,et al.  Low-Power Optical Trapping of Nanoparticles and Proteins with Resonant Coaxial Nanoaperture Using 10 nm Gap. , 2018, Nano letters.

[16]  N. Heckenberg,et al.  Effects associated with bubble formation in optical trapping , 2000 .

[17]  Ullrich Steiner,et al.  Single molecule SERS and detection of biomolecules with a single gold nanoparticle on a mirror junction. , 2013, The Analyst.

[18]  A. Ashkin Acceleration and trapping of particles by radiation pressure , 1970 .

[19]  Wenqi Zhu,et al.  Quantum mechanical effects in plasmonic structures with subnanometre gaps , 2016, Nature Communications.

[20]  J. Naciri,et al.  Tunable Subnanometer Gap Plasmonic Metasurfaces , 2017, 1711.02067.

[21]  Ou Chen,et al.  Optical Trapping and Two-Photon Excitation of Colloidal Quantum Dots Using Bowtie Apertures , 2016 .

[22]  Giovanni Volpe,et al.  Surface plasmon optical tweezers: tunable optical manipulation in the femtonewton range. , 2008, Physical review letters.

[23]  Steven Jones,et al.  Raman spectroscopy of single nanoparticles in a double-nanohole optical tweezer system , 2015, 1507.06374.

[24]  Olivier J. F. Martin,et al.  Controlling and tuning strong optical field gradients at a local probe microscope tip apex , 1997 .

[25]  Saulius Juodkazis,et al.  Optical tweezing and binding at high irradiation powers on black-Si , 2017, Scientific Reports.

[26]  D V Petrov,et al.  Raman spectroscopy of optically trapped particles , 2007 .

[27]  X. Hou,et al.  Tunable potential well for plasmonic trapping of metallic particles by bowtie nano-apertures , 2016, Scientific reports.

[28]  P. Kristensen,et al.  Modes and Mode Volumes of Leaky Optical Cavities and Plasmonic Nanoresonators , 2013, 1312.5769.

[29]  Olivier J. F. Martin,et al.  A Universal Law for Plasmon Resonance Shift in Biosensing , 2015 .

[30]  M. Scully,et al.  Enhancement of optical processes in coupled plasmonic nanocavities [Invited]. , 2011, Applied optics.

[31]  E. Schonbrun,et al.  Trapping and rotating nanoparticles using a plasmonic nano-tweezer with an integrated heat sink. , 2011, Nature communications.

[32]  R. A. Cox,et al.  Optical trapping and Raman spectroscopy of solid particles. , 2014, Physical chemistry chemical physics : PCCP.

[33]  C. Ciminelli,et al.  Design of an Optical Trapping Device Based on an Ultra-High Q/V Resonant Structure , 2014, IEEE Photonics Journal.

[34]  F. Cichos Thermoelectric fields hold nanoparticles , 2018 .

[35]  Boyu Ji,et al.  Controlling optical field enhancement of a nanoring dimer for plasmon-based applications , 2016 .

[36]  Romain Quidant,et al.  Self -induced back-action optical trapping of dielectric nanoparticles , 2009 .

[37]  R. Gordon [INVITED] Biosensing with nanoaperture optical tweezers , 2019, Optics & Laser Technology.

[38]  Wei Li,et al.  Probing and controlling photothermal heat generation in plasmonic nanostructures. , 2013, Nano letters.

[39]  G. Song,et al.  Optical trapping of single quantum dots for cavity quantum electrodynamics , 2018 .

[40]  P. Mestres,et al.  Unraveling the optomechanical nature of plasmonic trapping , 2015, Light: Science & Applications.

[41]  A. Urban,et al.  Optical trapping and manipulation of plasmonic nanoparticles: fundamentals, applications, and perspectives. , 2014, Nanoscale.

[42]  Jin Qin,et al.  Resonant Effects in Nanoscale Bowtie Apertures , 2016, Scientific Reports.

[43]  S. Tjin,et al.  Optical trapping-assisted SERS platform for chemical and biosensing applications: Design perspectives , 2017 .

[44]  Abhay Kotnala,et al.  Double nanohole optical tweezers visualize protein p53 suppressing unzipping of single DNA-hairpins. , 2014, Biomedical optics express.

[45]  Qidai Chen,et al.  Dynamics of Strong Coupling between CdSe Quantum Dots and Surface Plasmon Polaritons in Subwavelength Hole Array. , 2016, The journal of physical chemistry letters.

[46]  U. Hohenester Nano and Quantum Optics , 2020, Graduate Texts in Physics.

[47]  L.Y. Lin,et al.  Trapping and Manipulation of Biological Particles Through a Plasmonic Platform , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[48]  Boyu Ji,et al.  Resonance hybridization and near field properties of strongly coupled plasmonic ring dimer-rod nanosystem , 2015 .

[49]  Peter Zijlstra,et al.  Single-Molecule Plasmon Sensing: Current Status and Future Prospects , 2017, ACS sensors.

[50]  Dan Cojoc,et al.  Changes in microbubble dynamics near a boundary revealed by combined optical micromanipulation and high-speed imaging , 2007 .

[51]  Amr A E Saleh,et al.  Toward efficient optical trapping of sub-10-nm particles with coaxial plasmonic apertures. , 2012, Nano letters.

[52]  R. Gelfand,et al.  Effect of surface roughness on self-assembled monolayer plasmonic ruler in nonlocal regime. , 2014, Optics express.

[53]  S. Wada,et al.  Coupled laser molecular trapping, cluster assembly, and deposition fed by laser-induced Marangoni convection. , 2008, Optics express.

[54]  S. Chu,et al.  Observation of a single-beam gradient force optical trap for dielectric particles. , 1986, Optics letters.

[55]  Qidai Chen,et al.  Hybrid‐State Dynamics of Dye Molecules and Surface Plasmon Polaritons under Ultrastrong Coupling Regime , 2018 .

[56]  R. T. Hill,et al.  Probing the Ultimate Limits of Plasmonic Enhancement , 2012, Science.

[57]  Lei Zhang,et al.  Giant photoluminescence enhancement in tungsten-diselenide–gold plasmonic hybrid structures , 2016, Nature Communications.

[58]  K. Crozier,et al.  Trapping-assisted sensing of particles and proteins using on-chip optical microcavities. , 2013, ACS nano.

[59]  Wenqi Zhu,et al.  Surface-enhanced Raman scattering with Ag nanoparticles optically trapped by a photonic crystal cavity. , 2013, Nano letters.

[60]  Andrea Toma,et al.  Plasmon resonance tuning in metal nanostars for surface enhanced Raman scattering , 2014, Nanotechnology.

[61]  Yasuyuki Tsuboi Plasmonic optical tweezers: A long arm and a tight grip. , 2016, Nature nanotechnology.

[62]  Stefan A Maier,et al.  Plasmonic field enhancement and SERS in the effective mode volume picture. , 2006, Optics express.

[63]  Jingquan Lin,et al.  Modelling and controlled enhancement of gap plasmon responses of strongly coupled gold nanoparticles , 2016, SPIE/COS Photonics Asia.

[64]  Halina Rubinsztein-Dunlop,et al.  Physics of optical tweezers. , 2007, Methods in cell biology.

[65]  Zongfu Yu,et al.  Large single-molecule fluorescence enhancements produced by a bowtie nanoantenna , 2009 .

[66]  Alemayehu Nana Koya,et al.  Charge transfer plasmons: Recent theoretical and experimental developments , 2017 .

[67]  Lukas Novotny,et al.  Theory of Nanometric Optical Tweezers , 1997 .

[68]  M W Berns,et al.  Physiological monitoring of optically trapped cells: assessing the effects of confinement by 1064-nm laser tweezers using microfluorometry. , 1996, Biophysical journal.

[69]  Aftab Ahmed,et al.  Reaching the Limits of Enhancement in (Sub)Nanometer Metal Structures , 2018, ACS Photonics.

[70]  L. Hesselink,et al.  On the substrate contribution to the back action trapping of plasmonic nanoparticles on resonant near-field traps in plasmonic films. , 2017, Optics express.

[71]  A. Borisov,et al.  Robust subnanometric plasmon ruler by rescaling of the nonlocal optical response. , 2013, Physical review letters.

[72]  S Hughes,et al.  Generalized effective mode volume for leaky optical cavities. , 2012, Optics letters.

[73]  M. N. Armenise,et al.  Ultra-high Q/V hybrid cavity for strong light-matter interaction , 2017 .

[74]  Kishan Dholakia,et al.  Optical manipulation of nanoparticles: a review , 2008 .

[75]  F. J. García de abajo,et al.  Nano-optical trapping of Rayleigh particles and Escherichia coli bacteria with resonant optical antennas. , 2009, Nano letters.

[76]  De‐Yin Wu,et al.  Nanostructure-based plasmon-enhanced Raman spectroscopy for surface analysis of materials , 2016 .

[77]  M. Wanunu,et al.  Plasmonic nanopores for single-molecule detection and manipulation: towards sequencing applications. , 2019, Nano letters.

[78]  Reuven Gordon,et al.  Optical trapping of 12 nm dielectric spheres using double-nanoholes in a gold film. , 2011, Nano letters.

[79]  H. Misawa,et al.  Two-Photon Excitation of Dye-Doped Liquid Crystal by a CW-Laser Irradiation , 2008 .

[80]  S. Kawata,et al.  Plasmonics for near-field nano-imaging and superlensing , 2009 .

[81]  R. Gordon,et al.  Observing single protein binding by optical transmission through a double nanohole aperture in a metal film. , 2013, Biomedical optics express.

[82]  Jin-Woo Oh,et al.  Distinguishable Plasmonic Nanoparticle and Gap Mode Properties in a Silver Nanoparticle on a Gold Film System Using Three-Dimensional FDTD Simulations , 2018, Nanomaterials.

[83]  Qidai Chen,et al.  The role of Rabi splitting tuning in the dynamics of strongly coupled J-aggregates and surface plasmon polaritons in nanohole arrays. , 2016, Nanoscale.

[84]  M. Bawendi,et al.  10 nm gap bowtie plasmonic apertures fabricated by modified lift-off process , 2016 .

[85]  Manabendra Chandra,et al.  Exploring the coherent interaction in a hybrid system of hollow gold nanoprisms and cyanine dye J-aggregates: role of plasmon-hybridization mediated local electric-field enhancement. , 2017, Physical chemistry chemical physics : PCCP.

[86]  Lih Y. Lin,et al.  Photonic Crystal Optical Tweezers with High Efficiency for Live Biological Samples and Viability Characterization , 2016, Scientific Reports.

[87]  Matthew J Lang,et al.  Combining single-molecule manipulation and single-molecule detection. , 2014, Current opinion in structural biology.

[88]  R. Gordon,et al.  Wedge and gap plasmonic resonances in double nanoholes. , 2015, Optics express.

[89]  C. Bradac Nanoscale Optical Trapping: A Review , 2018 .

[90]  Abhay Kotnala,et al.  Sensing nanoparticles using a double nanohole optical trap. , 2013, Lab on a chip.

[91]  George C. Schatz,et al.  Modeling the effect of small gaps in surface-enhanced Raman spectroscopy , 2012 .

[92]  R. Quidant,et al.  Three-dimensional manipulation with scanning near-field optical nanotweezers. , 2014, Nature nanotechnology.

[93]  A. Dunn,et al.  Nanoradiator-Mediated Deterministic Opto- Thermoelectric Manipulation , 2018, 2019 Conference on Lasers and Electro-Optics (CLEO).

[94]  Niels Verellen,et al.  Experimental realization of subradiant, superradiant, and fano resonances in ring/disk plasmonic nanocavities. , 2010, ACS nano.

[95]  Philippe Guyot-Sionnest,et al.  Optical trapping and alignment of single gold nanorods by using plasmon resonances. , 2006 .

[96]  D. Chang,et al.  Self-induced back-action optical trapping in nanophotonic systems , 2015, 1505.02709.

[97]  P W Smith,et al.  Continuous-wave self-focusing and self-trapping of light in artificial Kerr media. , 1982, Optics letters.

[98]  T. Shegai,et al.  Role of material loss and mode volume of plasmonic nanocavities for strong plasmon-exciton interactions. , 2016, Optics express.

[99]  D. Grier A revolution in optical manipulation , 2003, Nature.

[100]  Alexandra Boltasseva,et al.  Long-range and rapid transport of individual nano-objects by a hybrid electrothermoplasmonic nanotweezer. , 2016, Nature nanotechnology.

[101]  Christian Santschi,et al.  Trapping and sensing 10 nm metal nanoparticles using plasmonic dipole antennas. , 2010, Nano letters.

[102]  R. Gelfand,et al.  Label-free free-solution nanoaperture optical tweezers for single molecule protein studies. , 2015, The Analyst.

[103]  Trapping of a single DNA molecule using nanoplasmonic structures for biosensor applications , 2014, Biomedical optics express.

[104]  Jeremy J. Baumberg,et al.  Nanooptics of Molecular-Shunted Plasmonic Nanojunctions , 2014, Nano letters.

[105]  M. Kaniber,et al.  Monolithically integrated single quantum dots coupled to bowtie nanoantennas. , 2016, Optics express.

[106]  Quo vadis, plasmonic optical tweezers? , 2019, Light, science & applications.

[107]  Saulius Juodkazis,et al.  Laser trapping of deformable objects. , 2007, Optics express.

[108]  Gang Chen,et al.  Plasmonic materials for energy: From physics to applications , 2013, 1310.6949.

[109]  Steven Jones,et al.  Improvement of Sensing and Trapping Efficiency of Double Nanohole Apertures via Enhancing the Wedge Plasmon Polariton Modes with Tapered Cusps , 2017 .

[110]  Richard F. Haglund,et al.  Revealing plasmonic gap modes in particle-on-film systems using dark-field spectroscopy. , 2012, ACS nano.

[111]  A. Zelenina,et al.  Parallel and selective trapping in a patterned plasmonic landscape , 2007, 2007 IEEE/LEOS International Conference on Optical MEMS and Nanophotonics.

[112]  Aleksei Aksimentiev,et al.  Plasmonic Nanopores for Trapping, Controlling Displacement, and Sequencing of DNA , 2015, ACS nano.

[113]  Yasuyuki Tsuboi,et al.  Plasmonic Optical Tweezers toward Molecular Manipulation: Tailoring Plasmonic Nanostructure, Light Source, and Resonant Trapping. , 2014, The journal of physical chemistry letters.

[114]  A. Ashkin,et al.  Optical trapping and manipulation of viruses and bacteria. , 1987, Science.

[115]  Yang Li,et al.  Achieving Strong Field Enhancement and Light Absorption Simultaneously with Plasmonic Nanoantennas Exploiting Film-Coupled Triangular Nanodisks , 2017 .

[116]  M. Padgett,et al.  Holographic optical trapping Raman micro-spectroscopy for non-invasive measurement and manipulation of live cells. , 2018, Optics express.

[117]  A. Yamaguchi,et al.  Reversible phase transitions in polymer gels induced by radiation forces , 2000, Nature.

[118]  M. Dresselhaus,et al.  Ultrasmall Mode Volumes in Plasmonic Cavities of Nanoparticle-On-Mirror Structures. , 2016, Small.

[119]  Romain Quidant,et al.  Plasmon nano-optical tweezers , 2011 .

[120]  R. A. Waldron,et al.  Perturbation theory of resonant cavities , 1960 .

[121]  Satoshi Kawata,et al.  Radiation Force Exerted on Subwavelength Particles near a Nanoaperture , 1999 .

[122]  Yongfeng Mei,et al.  Whispering-gallery nanocavity plasmon-enhanced Raman spectroscopy , 2015, Scientific Reports.

[123]  C. Ahn,et al.  Squeezing Photons into a Point-Like Space. , 2015, Nano letters.

[124]  Saulius Juodkazis,et al.  Laser manipulation based on a light-induced molecular reordering. , 2006, Optics express.

[125]  Lei Wang,et al.  Dynamics of Strong Coupling between J‐Aggregates and Surface Plasmon Polaritons in Subwavelength Hole Arrays , 2016 .

[126]  Abhay Kotnala,et al.  Quantification of high-efficiency trapping of nanoparticles in a double nanohole optical tweezer. , 2014, Nano letters.

[127]  Giovanni Volpe,et al.  Optical trapping and manipulation of nanostructures. , 2013, Nature nanotechnology.

[128]  Brandon Redding,et al.  Raman Spectroscopy of Optically Trapped Single Biological Micro-Particles , 2015, Sensors.

[129]  J. Baumberg,et al.  Unfolding the contents of sub-nm plasmonic gaps using normalising plasmon resonance spectroscopy. , 2015, Faraday discussions.

[130]  T. Krauss,et al.  Photonic and Plasmonic Nanotweezing of Nano- and Microscale Particles , 2017, Applied spectroscopy.

[131]  Steven T. Wereley,et al.  Photothermal heating enabled by plasmonic nanostructures for electrokinetic manipulation and sorting of particles. , 2014, ACS nano.

[132]  L. Lagae,et al.  Raman fingerprinting of single dielectric nanoparticles in plasmonic nanopores. , 2015, Nanoscale.

[133]  R. Ewoldt,et al.  Plasmonic Optical Trapping in Biologically Relevant Media , 2014, PloS one.

[134]  Alemayehu Nana Koya,et al.  Coherent Control of Gap Plasmons of a Complex Nanosystem by Shaping Driving Femtosecond Pulses , 2017, Plasmonics.

[135]  J. Baumberg,et al.  How Ultranarrow Gap Symmetries Control Plasmonic Nanocavity Modes: From Cubes to Spheres in the Nanoparticle-on-Mirror , 2017 .

[136]  Yuebing Zheng,et al.  Opto-thermoelectric nanotweezers , 2018, Nature Photonics.

[137]  G. Mahan,et al.  Losses in plasmonics: from mitigating energy dissipation to embracing loss-enabled functionalities , 2017, 1802.01469.

[138]  George C. Schatz,et al.  Silver nanoparticle array structures that produce giant enhancements in electromagnetic fields , 2005 .