A method for visualization of invariant sets of dynamical systems based on the ergodic partition.

We provide an algorithm for visualization of invariant sets of dynamical systems with a smooth invariant measure. The algorithm is based on a constructive proof of the ergodic partition theorem for automorphisms of compact metric spaces. The ergodic partition of a compact metric space A, under the dynamics of a continuous automorphism T, is shown to be the product of measurable partitions of the space induced by the time averages of a set of functions on A. The numerical algorithm consists of computing the time averages of a chosen set of functions and partitioning the phase space into their level sets. The method is applied to the three-dimensional ABC map for which the dynamics was visualized by other methods in Feingold et al. [J. Stat. Phys. 50, 529 (1988)]. (c) 1999 American Institute of Physics.