A method for visualization of invariant sets of dynamical systems based on the ergodic partition.
暂无分享,去创建一个
[1] O. Piro,et al. Passive scalars, three-dimensional volume-preserving maps, and chaos , 1988 .
[2] George Haller,et al. Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schro¨dinger equation , 1995 .
[3] O. Junge,et al. Exploring invariant sets and invariant measures. , 1997, Chaos.
[4] P R Halmos. On A Theorem of Dieudonné. , 1949, Proceedings of the National Academy of Sciences of the United States of America.
[5] R. Mañé,et al. Ergodic Theory and Differentiable Dynamics , 1986 .
[6] E. Hewitt,et al. On the fundamental ideas of measure theory , 1962 .
[7] K. Sigmund,et al. Ergodic Theory on Compact Spaces , 1976 .
[8] Igor Mezic,et al. On the geometrical and statistical properties of dynamical systems : theory and applications , 1994 .
[9] J. Meiss,et al. Exit times and transport for symplectic twist maps. , 1993, Chaos.
[10] J. Neumann. Zur Operatorenmethode In Der Klassischen Mechanik , 1932 .
[11] J. Meiss. Transient measures in the standard map , 1994 .
[12] Diercksen,et al. Computation of the Arnol'd web for the hydrogen atom in crossed electric and magnetic fields. , 1996, Physical review letters.