Evolutionary Algorithms and Simulated Annealing for MCDM

This chapter describes two stochastic search and optimization techniques, evolutionary algorithms and simulated annealing, both inspired by models of natural processes (evolution and thermodynamics) and considers their role and application in multiple criteria decision making and analysis. The basic single criteria algorithms are first presented in each case and it is then demonstrated with an example problem how these may be modified and set up to deal with multiple design criteria. Whilst the example employed considers the design of a robust control system for a high speed maglev vehicle, the approaches and techniques have a far wider range of application.

[1]  David E. Goldberg,et al.  Finite Markov Chain Analysis of Genetic Algorithms , 1987, ICGA.

[2]  Ian Postlethwaite,et al.  Multivariable Feedback Control: Analysis and Design , 1996 .

[3]  D. Q. Mayne,et al.  Computer-aided design of control systems via optimisation , 1979 .

[4]  James E. Baker,et al.  Adaptive Selection Methods for Genetic Algorithms , 1985, International Conference on Genetic Algorithms.

[5]  James F. Whidborne,et al.  EMS control system design for a maglev vehicle - A critical system , 1993, Autom..

[6]  I. Postlethwaite,et al.  Simulated annealing for multi-objective control system design , 1996 .

[7]  James F. Whidborne,et al.  Critical Control Systems: Theory, Design, and Applications , 1993 .

[8]  P. K. Sinha ELECTROMAGNETIC SUSPENSION DYNAMICS & CONTROL , 1987 .

[9]  Thomas Bäck,et al.  An Overview of Evolutionary Computation , 1993, ECML.

[10]  S. Ranjithan,et al.  Using genetic algorithms to solve a multiple objective groundwater pollution containment problem , 1994 .

[11]  David Q. Mayne,et al.  Computer aided design of control systems via optimization , 1979 .

[12]  Ching-Lai Hwang,et al.  Multiple Objective Decision Making , 1994 .

[13]  V. Zakian A performance criterion , 1986 .

[14]  James E. Baker,et al.  Reducing Bias and Inefficienry in the Selection Algorithm , 1987, ICGA.

[15]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[16]  C. Hwang,et al.  Fuzzy Multiple Objective Decision Making: Methods And Applications , 1996 .

[17]  John J. Grefenstette,et al.  Genetic Algorithms for Changing Environments , 1992, PPSN.

[18]  B. Silverman Density estimation for statistics and data analysis , 1986 .

[19]  Kalyanmoy Deb,et al.  An Investigation of Niche and Species Formation in Genetic Function Optimization , 1989, ICGA.

[20]  Peter Müller,et al.  Design of optimal state-observers and its application to maglev vehicle suspension control , 1977 .

[21]  A. Utzt,et al.  Control Law Design and Dynamic Evaluations for a MAGLEV Vehicle with a Combined Lift and Guidance Suspension System , 1983, 1983 American Control Conference.

[22]  Peter J. Fleming,et al.  An Overview of Evolutionary Algorithms in Multiobjective Optimization , 1995, Evolutionary Computation.

[23]  Carlos M. Fonseca,et al.  Multiobjective genetic algorithms with application to control engineering problems. , 1995 .

[24]  Zbigniew Michalewicz,et al.  Evolutionary Computation 1 , 2018 .

[25]  Ian Postlethwaite,et al.  Robust controller design using H∞ loop-shaping and the method of inequalities , 1994, IEEE Trans. Control. Syst. Technol..

[26]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[27]  R. G. Rhodes,et al.  Electromagnetic Suspension—Dynamics and Control , 1989 .

[28]  John J. Grefenstette,et al.  Genetic algorithms and their applications , 1987 .

[29]  Heinz Mühlenbein,et al.  Predictive Models for the Breeder Genetic Algorithm I. Continuous Parameter Optimization , 1993, Evolutionary Computation.

[30]  Steven G. Louie,et al.  A Monte carlo simulated annealing approach to optimization over continuous variables , 1984 .

[31]  David E. Goldberg,et al.  Genetic Algorithms with Sharing for Multimodalfunction Optimization , 1987, ICGA.

[32]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .