Singularity parameter determination in adhesively bonded lap joints for use in failure criteria

A procedure for the singularity characterization of anisotropic multimaterial corners which typically appear in adhesively bonded lap joints between metals and composites is presented and implemented in the present work. The characterization in terms of characteristic exponents (stress singularities), characteristic functions and generalized stress intensity factors allows the definition of an oriented test program in order to analyze the suitability of a singularity based failure criterion for structures of this type.

[1]  T. R. Guess,et al.  Butt joint tensile strength : interface corner stress intensity factor prediction , 1995 .

[2]  H. L. Groth,et al.  Stress singularities and fracture at interface corners in bonded joints , 1988 .

[3]  Alfred Rotimi Akisanya,et al.  On the singular stress field near the edge of bonded joints , 1997 .

[4]  Zohar Yosibash,et al.  Crack onset at a v-notch. Influence of the notch tip radius , 2003 .

[5]  Leslie Banks-Sills,et al.  A Conservative Integral for Determining Stress Intensity Factors of a Bimaterial Strip , 1997 .

[6]  G. Sinclair,et al.  On the stress singularities in the plane elasticity of the composite wedge , 1979 .

[7]  V. Mantič,et al.  Computing stress singularities in transversely isotropic multimaterial corners by means of explicit expressions of the orthonormalized Stroh-eigenvectors , 2009 .

[8]  B. Szabó,et al.  A note on numerically computed eigenfunctions and generalized stress intensity factors associated with singular points , 1996 .

[9]  V. Mantič,et al.  Stress singularities in 2D orthotropic corners , 1997 .

[10]  Adrián P. Cisilino,et al.  Boundary element analysis of three-dimensional mixed-mode cracks via the interaction integral , 2005 .

[11]  J. Helsing,et al.  On the computation of stress fields on polygonal domains with V‐notches , 2002 .

[12]  A. N. Stroh Steady State Problems in Anisotropic Elasticity , 1962 .

[13]  F. E. Penado Singular intensity factors at bimaterial anisotropic interfaces , 2001 .

[14]  D. Munz,et al.  Stress singularities in a dissimilar materials joint with edge tractions under mechanical and thermal loadings , 1997 .

[15]  Paul F. Joseph,et al.  Multiple root solutions, wedge paradoxes and singular stress states that are not variable-separable , 1998 .

[16]  H.-P. Rossmanith,et al.  Damage and failure of interfaces , 1997 .

[17]  M. Dunn,et al.  Small scale geometric and material features at geometric discontinuities and their role in fracture analysis , 2001 .

[18]  L. Banks‐Sills,et al.  A conservative integral for determining stress intensity factors of a bimaterial notch , 2002 .

[19]  T. Ting,et al.  The stroh formalism for anisotropic materials that possess an almost extraordinary degenerate matrix N , 1997 .

[20]  V. Mantič,et al.  A domain-independent integral for computation of stress intensity factors along three-dimensional crack fronts and edges by BEM , 2006 .

[21]  V. Mantič,et al.  Singularity analysis of anisotropic multimaterial corners , 2003 .

[22]  H. Nakayama,et al.  Evaluation of the fatigue strength of adhesively bonded CFRP/metal single and single-step double-lap joints , 1999 .

[23]  D. Munz,et al.  Stresses near the edge of bonded dissimilar materials described by two stress intensity factors , 1993 .

[24]  T. Ting,et al.  Sextic formalism in anisotropic elasticity for almost non-semisimple matrix N , 1988 .

[25]  A. N. Stroh Dislocations and Cracks in Anisotropic Elasticity , 1958 .

[26]  Kazumi Tanuma,et al.  Surface-impedance tensors of transversely isotropic elastic materials , 1996 .

[27]  E. D. Reedy,et al.  Intensity of the stress singularity at the interface corner between a bonded elastic and rigid layer , 1990 .

[29]  A. R. Luxmoore,et al.  Proceedings of the third international conference on numerical methods in fracture mechanics , 1984 .

[30]  S. Pageau,et al.  The order of stress singularities for bonded and disbonded three-material junctions , 1994 .

[31]  L. R. F. Rose,et al.  Compact solutions for the corner singularity in bonded lap joints , 2000 .

[32]  G. Sinclair,et al.  On the singular behavior at the vertex of a bi-material wedge , 1981 .

[33]  Paolo Lazzarin,et al.  A two-term stress function approach to evaluate stress distributions in bonded joints of different geometries , 2002 .

[34]  Paul F. Joseph,et al.  Standardized complex and logarithmic eigensolutions for n-material wedges and junctions , 1996 .

[35]  Toshio Hattori,et al.  A Stress-Singularity-Parameter Approach for Evaluating the Adhesive Strength of Single-Lap Joints , 1991 .

[36]  P. Karasudhi,et al.  Singular stress fields of angle-ply and monoclinic bimaterial wedges , 2001 .

[37]  J. D. Eshelby,et al.  Anisotropic elasticity with applications to dislocation theory , 1953 .

[38]  Alfred Rotimi Akisanya,et al.  Wedge corner stress behaviour of bonded dissimilar materials , 1999 .

[39]  David A. Dillard,et al.  A Stress Singularity Approach for the Prediction of Fatigue Crack Initiation in Adhesive Bonds. Part 1: Theory , 1999 .

[40]  Marino Quaresimin,et al.  Stress intensity factors and strain energy release rates in single lap bonded joints in composite materials , 2006 .

[41]  G. Sinclair,et al.  Stress singularities in classical elasticity–I: Removal, interpretation, and analysis , 2004 .