Inclusions and Subtypes I: First-Order Case
暂无分享,去创建一个
[1] Roy L. Crole,et al. Categories for Types , 1994, Cambridge mathematical textbooks.
[2] John C. Reynolds,et al. Three Approaches to Type Structure , 1985, TAPSOFT, Vol.1.
[3] Luca Cardelli,et al. A Semantics of Multiple Inheritance , 1984, Information and Computation.
[4] José Meseguer,et al. Initiality, induction, and computability , 1986 .
[5] Luca Cardelli,et al. A Semantic Basis for Quest , 1991, J. Funct. Program..
[6] Gert Smolka. TEL (Version 0.9) Report and User Manual , 1988 .
[7] Robin Milner,et al. Definition of standard ML , 1990 .
[8] Axel Poigné,et al. Parametrization for Order-Sorted Algebraic Specification , 1990, J. Comput. Syst. Sci..
[9] John C. Reynolds,et al. Using category theory to design implicit conversions and generic operators , 1980, Semantics-Directed Compiler Generation.
[10] José Meseguer,et al. Unifying Functional, Object-Oriented and Relational Programming with Logical Semantics , 1987, Research Directions in Object-Oriented Programming.
[11] S. Lane. Categories for the Working Mathematician , 1971 .
[12] José Meseguer,et al. A logical theory of concurrent objects and its realization in the Maude language , 1993 .
[13] Jean-Pierre Jouannaud,et al. Operational Semantics for Order-Sorted Algebra , 1985, ICALP.
[14] F. W. Lawvere,et al. FUNCTORIAL SEMANTICS OF ALGEBRAIC THEORIES. , 1963, Proceedings of the National Academy of Sciences of the United States of America.
[15] David A. Wolfram,et al. On Types and FOOPS , 1990, DS-4.
[16] John C. Mitchell,et al. Coercion and type inference , 1984, POPL.
[17] J. Meseguer,et al. Order-Sorted Algebra Solves the Constructor-Selector, Multiple Representation, and Coercion Problems , 1993, Inf. Comput..
[18] Luca Cardelli,et al. On understanding types, data abstraction, and polymorphism , 1985, CSUR.
[19] Jeffrey D. Ullman. Elements of ML programming , 1994 .
[20] H. Ehrig,et al. Equational Specifications and Algebras , 1985 .
[21] Giorgio Ghelli,et al. Coherence of Subsumption, Minimum Typing and Type-Checking in F<= , 1992, Math. Struct. Comput. Sci..
[22] José Meseguer,et al. Order-Sorted Algebra I: Equational Deduction for Multiple Inheritance, Overloading, Exceptions and Partial Operations , 1992, Theor. Comput. Sci..
[23] Zhenyu Qian,et al. Higher-Order Order-Sorted Algebras , 1990, ALP.
[24] José Meseguer,et al. EQLOG: Equality, Types, and Generic Modules For Logic Programming , 1986, Logic Programming: Functions, Relations, and Equations.
[25] Joseph A. Goguen,et al. Order Sorted Algebra , 1996 .
[26] José Meseguer,et al. Inclusions and Subtypes II: Higher-Order Case , 1996, J. Log. Comput..
[27] Jean Benabou,et al. Structures algébriques dans les catégories , 1968 .
[28] José Meseguer,et al. Operational Semantics of OBJ-3 (Extended Abstract) , 1988, ICALP.
[29] Martin Gogolla,et al. Partially Ordered Sorts in Algebraic Specifications , 1984, CAAP.