暂无分享,去创建一个
[1] P. Dirac. Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.
[2] Etienne Emmrich,et al. Gewöhnliche und Operator-Differentialgleichungen , 2004 .
[3] C. Lubich,et al. A projector-splitting integrator for dynamical low-rank approximation , 2013, BIT Numerical Mathematics.
[4] Chiara Piazzola,et al. Numerical low-rank approximation of matrix differential equations , 2017, J. Comput. Appl. Math..
[5] Joos Vandewalle,et al. A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..
[6] C. Lubich. From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .
[7] Francis R. Bach,et al. Consistency of trace norm minimization , 2007, J. Mach. Learn. Res..
[8] Wolfgang Dahmen,et al. Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations , 2014, Found. Comput. Math..
[9] Tony F. Chan,et al. Guarantees of Riemannian Optimization for Low Rank Matrix Recovery , 2015, SIAM J. Matrix Anal. Appl..
[10] Bernd Eggers,et al. Nonlinear Functional Analysis And Its Applications , 2016 .
[11] W. Hackbusch,et al. A New Scheme for the Tensor Representation , 2009 .
[12] Othmar Koch,et al. Variational-splitting time integration of the multi-configuration time-dependent Hartree–Fock equations in electron dynamics , 2011 .
[13] André Uschmajew,et al. Geometric Methods on Low-Rank Matrix and Tensor Manifolds , 2020 .
[14] Reinhold Schneider,et al. Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..
[15] E. Zeidler. Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .
[16] Ivan V. Oseledets,et al. Time Integration of Tensor Trains , 2014, SIAM J. Numer. Anal..
[17] Reinhold Schneider,et al. Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.
[18] Fabio Nobile,et al. Dual Dynamically Orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions , 2018, J. Comput. Phys..
[19] Albert Cohen,et al. Kolmogorov widths and low-rank approximations of parametric elliptic PDEs , 2015, Math. Comput..
[20] Fabio Nobile,et al. Error Analysis of the Dynamically Orthogonal Approximation of Time Dependent Random PDEs , 2015, SIAM J. Sci. Comput..
[21] Hanna Walach,et al. Discretized Dynamical Low-Rank Approximation in the Presence of Small Singular Values , 2016, SIAM J. Numer. Anal..
[22] F. Verstraete,et al. Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.
[23] R. Showalter. Monotone operators in Banach space and nonlinear partial differential equations , 1996 .
[24] Dajana Conte,et al. Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .
[25] Alexander Ostermann,et al. Convergence of a Low-Rank Lie-Trotter Splitting for Stiff Matrix Differential Equations , 2018, SIAM J. Numer. Anal..
[26] E. Schmidt. Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .
[27] C. Bardos,et al. Setting and Analysis of the Multi-configuration Time-dependent Hartree–Fock Equations , 2009, 0903.3647.
[28] P. Raviart,et al. Finite Element Approximation of the Navier-Stokes Equations , 1979 .
[29] Pierre F. J. Lermusiaux,et al. Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .
[30] Tobias Jahnke,et al. On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.
[31] Saber Trabelsi,et al. Global-in-time existence of solutions to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition , 2009, Appl. Math. Lett..
[32] Fabio Nobile,et al. Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval , 2020, ArXiv.
[33] Othmar Koch,et al. Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..
[34] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[35] E. Zeidler. Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .
[36] Lars Grasedyck,et al. Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.
[37] Tom Fleischer,et al. Applied Functional Analysis , 2016 .
[38] Antonio Falcó,et al. On the Dirac–Frenkel Variational Principle on Tensor Banach Spaces , 2016, Found. Comput. Math..
[39] Eberhard Zeidler,et al. Applied Functional Analysis: Main Principles and Their Applications , 1995 .
[40] Sören Bartels,et al. Numerical Methods for Nonlinear Partial Differential Equations , 2015 .
[41] Ivan Oseledets,et al. Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..
[42] Othmar Koch,et al. Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..
[43] W. Hackbusch. Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.
[44] Othmar Koch,et al. Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics , 2007 .
[45] U. Manthe,et al. The multi-configurational time-dependent Hartree approach , 1990 .
[46] Pierre F. J. Lermusiaux,et al. A Geometric Approach to Dynamical Model Order Reduction , 2017, SIAM J. Matrix Anal. Appl..
[47] Wolfgang Dahmen,et al. Adaptive Low-Rank Methods: Problems on Sobolev Spaces , 2014, SIAM J. Numer. Anal..
[48] Reinhold Schneider,et al. Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..
[49] Christian Lubich,et al. An unconventional robust integrator for dynamical low-rank approximation , 2020, BIT Numerical Mathematics.
[50] A. Balakrishnan. Applied Functional Analysis , 1976 .
[51] Wolfgang Dahmen,et al. Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.
[52] A. Ern,et al. Low-rank approximation of linear parabolic equations by space-time tensor Galerkin methods , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.
[53] Lukas Einkemmer,et al. A Low-Rank Projector-Splitting Integrator for the Vlasov-Poisson Equation , 2018, SIAM J. Sci. Comput..
[54] Gene H. Golub,et al. Matrix computations , 1983 .