Existence of dynamical low-rank approximations to parabolic problems

The existence and uniqueness of weak solutions of dynamical low-rank evolution for parabolic partial differential equations in two spatial dimensions is shown, covering also non-diagonal diffusion in the elliptic part. The proof is based on a variational time-stepping scheme on the low-rank manifold. Moreover, this scheme is shown to be closely related to practical methods for computing such low-rank evolutions.

[1]  P. Dirac Note on Exchange Phenomena in the Thomas Atom , 1930, Mathematical Proceedings of the Cambridge Philosophical Society.

[2]  Etienne Emmrich,et al.  Gewöhnliche und Operator-Differentialgleichungen , 2004 .

[3]  C. Lubich,et al.  A projector-splitting integrator for dynamical low-rank approximation , 2013, BIT Numerical Mathematics.

[4]  Chiara Piazzola,et al.  Numerical low-rank approximation of matrix differential equations , 2017, J. Comput. Appl. Math..

[5]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[6]  C. Lubich From Quantum to Classical Molecular Dynamics: Reduced Models and Numerical Analysis , 2008 .

[7]  Francis R. Bach,et al.  Consistency of trace norm minimization , 2007, J. Mach. Learn. Res..

[8]  Wolfgang Dahmen,et al.  Tensor-Sparsity of Solutions to High-Dimensional Elliptic Partial Differential Equations , 2014, Found. Comput. Math..

[9]  Tony F. Chan,et al.  Guarantees of Riemannian Optimization for Low Rank Matrix Recovery , 2015, SIAM J. Matrix Anal. Appl..

[10]  Bernd Eggers,et al.  Nonlinear Functional Analysis And Its Applications , 2016 .

[11]  W. Hackbusch,et al.  A New Scheme for the Tensor Representation , 2009 .

[12]  Othmar Koch,et al.  Variational-splitting time integration of the multi-configuration time-dependent Hartree–Fock equations in electron dynamics , 2011 .

[13]  André Uschmajew,et al.  Geometric Methods on Low-Rank Matrix and Tensor Manifolds , 2020 .

[14]  Reinhold Schneider,et al.  Approximation rates for the hierarchical tensor format in periodic Sobolev spaces , 2014, J. Complex..

[15]  E. Zeidler Nonlinear Functional Analysis and its Applications: III: Variational Methods and Optimization , 1984 .

[16]  Ivan V. Oseledets,et al.  Time Integration of Tensor Trains , 2014, SIAM J. Numer. Anal..

[17]  Reinhold Schneider,et al.  Tensor Networks and Hierarchical Tensors for the Solution of High-Dimensional Partial Differential Equations , 2016, Foundations of Computational Mathematics.

[18]  Fabio Nobile,et al.  Dual Dynamically Orthogonal approximation of incompressible Navier Stokes equations with random boundary conditions , 2018, J. Comput. Phys..

[19]  Albert Cohen,et al.  Kolmogorov widths and low-rank approximations of parametric elliptic PDEs , 2015, Math. Comput..

[20]  Fabio Nobile,et al.  Error Analysis of the Dynamically Orthogonal Approximation of Time Dependent Random PDEs , 2015, SIAM J. Sci. Comput..

[21]  Hanna Walach,et al.  Discretized Dynamical Low-Rank Approximation in the Presence of Small Singular Values , 2016, SIAM J. Numer. Anal..

[22]  F. Verstraete,et al.  Time-dependent variational principle for quantum lattices. , 2011, Physical review letters.

[23]  R. Showalter Monotone operators in Banach space and nonlinear partial differential equations , 1996 .

[24]  Dajana Conte,et al.  Mathematical Modelling and Numerical Analysis an Error Analysis of the Multi-configuration Time-dependent Hartree Method of Quantum Dynamics , 2022 .

[25]  Alexander Ostermann,et al.  Convergence of a Low-Rank Lie-Trotter Splitting for Stiff Matrix Differential Equations , 2018, SIAM J. Numer. Anal..

[26]  E. Schmidt Zur Theorie der linearen und nichtlinearen Integralgleichungen , 1907 .

[27]  C. Bardos,et al.  Setting and Analysis of the Multi-configuration Time-dependent Hartree–Fock Equations , 2009, 0903.3647.

[28]  P. Raviart,et al.  Finite Element Approximation of the Navier-Stokes Equations , 1979 .

[29]  Pierre F. J. Lermusiaux,et al.  Dynamically orthogonal field equations for continuous stochastic dynamical systems , 2009 .

[30]  Tobias Jahnke,et al.  On the approximation of high-dimensional differential equations in the hierarchical Tucker format , 2013, BIT Numerical Mathematics.

[31]  Saber Trabelsi,et al.  Global-in-time existence of solutions to the multiconfiguration time-dependent Hartree-Fock equations: A sufficient condition , 2009, Appl. Math. Lett..

[32]  Fabio Nobile,et al.  Existence of dynamical low rank approximations for random semi-linear evolutionary equations on the maximal interval , 2020, ArXiv.

[33]  Othmar Koch,et al.  Dynamical Tensor Approximation , 2010, SIAM J. Matrix Anal. Appl..

[34]  John M. Lee Introduction to Smooth Manifolds , 2002 .

[35]  E. Zeidler Nonlinear Functional Analysis and Its Applications: II/ A: Linear Monotone Operators , 1989 .

[36]  Lars Grasedyck,et al.  Existence and Computation of Low Kronecker-Rank Approximations for Large Linear Systems of Tensor Product Structure , 2004, Computing.

[37]  Tom Fleischer,et al.  Applied Functional Analysis , 2016 .

[38]  Antonio Falcó,et al.  On the Dirac–Frenkel Variational Principle on Tensor Banach Spaces , 2016, Found. Comput. Math..

[39]  Eberhard Zeidler,et al.  Applied Functional Analysis: Main Principles and Their Applications , 1995 .

[40]  Sören Bartels,et al.  Numerical Methods for Nonlinear Partial Differential Equations , 2015 .

[41]  Ivan Oseledets,et al.  Tensor-Train Decomposition , 2011, SIAM J. Sci. Comput..

[42]  Othmar Koch,et al.  Dynamical Low-Rank Approximation , 2007, SIAM J. Matrix Anal. Appl..

[43]  W. Hackbusch Tensor Spaces and Numerical Tensor Calculus , 2012, Springer Series in Computational Mathematics.

[44]  Othmar Koch,et al.  Regularity of the multi-configuration time-dependent Hartree approximation in quantum molecular dynamics , 2007 .

[45]  U. Manthe,et al.  The multi-configurational time-dependent Hartree approach , 1990 .

[46]  Pierre F. J. Lermusiaux,et al.  A Geometric Approach to Dynamical Model Order Reduction , 2017, SIAM J. Matrix Anal. Appl..

[47]  Wolfgang Dahmen,et al.  Adaptive Low-Rank Methods: Problems on Sobolev Spaces , 2014, SIAM J. Numer. Anal..

[48]  Reinhold Schneider,et al.  Dynamical Approximation by Hierarchical Tucker and Tensor-Train Tensors , 2013, SIAM J. Matrix Anal. Appl..

[49]  Christian Lubich,et al.  An unconventional robust integrator for dynamical low-rank approximation , 2020, BIT Numerical Mathematics.

[50]  A. Balakrishnan Applied Functional Analysis , 1976 .

[51]  Wolfgang Dahmen,et al.  Adaptive Near-Optimal Rank Tensor Approximation for High-Dimensional Operator Equations , 2013, Foundations of Computational Mathematics.

[52]  A. Ern,et al.  Low-rank approximation of linear parabolic equations by space-time tensor Galerkin methods , 2017, ESAIM: Mathematical Modelling and Numerical Analysis.

[53]  Lukas Einkemmer,et al.  A Low-Rank Projector-Splitting Integrator for the Vlasov-Poisson Equation , 2018, SIAM J. Sci. Comput..

[54]  Gene H. Golub,et al.  Matrix computations , 1983 .