Algebraic Systems, Trellis Codes, and Rotational Invariance

Publisher Summary The major goal of coding theory is the design of error-correction codes, a type of code used to transmit information reliably over an unreliable medium. This chapter introduces notation and concepts related to error-correction coding and trellis codes. It addresses the structural aspects of trellis codes. The chapter illustrates diagramming techniques, the concepts of equivalence, minimality, and the finite input memory systems of trellis codes. It also focuses on the error-correcting functions of trellis codes. The techniques used for maximum likelihood decoding, calculation of free Euclidean distance, and heuristic code design are briefly reviewed in the chapter. Furthermore, the chapter reviews prior results and present several new results on the structure and behavior of finite group homatons (FGHs), focusing on their relevance to trellis codes. The chapter also explores the way to find new trellis codes using FGHs. It is important to note that the chapter focuses mainly on the structure of the encoder, rather than on the constellation.

[1]  Ezio Biglieri,et al.  High-Level Modulation and Coding for Nonlinear Satellite Channels , 1984, IEEE Trans. Commun..

[2]  A. Willsky,et al.  Finite group homomorphic sequential system , 1972 .

[3]  Stephen G. Wilson,et al.  Rate 3/4 Convolutional Coding of 16-PSK: Code Design and Performance Study , 1984, IEEE Trans. Commun..

[4]  Howard Jay Chizeck Inverses of finite group systems , 1978 .

[5]  S. Pope,et al.  The application of error control to communications , 1987, IEEE Communications Magazine.

[6]  Heinrich Meyr,et al.  Rotationally invariant trellis codes for mPSK modulation , 1987 .

[7]  Jr. G. Forney,et al.  The viterbi algorithm , 1973 .

[8]  T. Aulin,et al.  Continuous Phase Modulation - Part I: Full Response Signaling , 1981, IEEE Transactions on Communications.

[9]  Ezio Biglieri Ungerboeck codes do not shape the signal power spectrum , 1986, IEEE Trans. Inf. Theory.

[10]  Stephen G. Wilson,et al.  An improved algorithm for evaluating trellis phase codes , 1984, IEEE Trans. Inf. Theory.

[11]  Alan S. Willsky,et al.  Dynamical systems defined on groups : structural properties and estimation. , 1973 .

[12]  Elwyn R. Berlekamp,et al.  A lower bound to the distribution of computation for sequential decoding , 1967, IEEE Trans. Inf. Theory.

[13]  G. Ungerboeck,et al.  Trellis-coded modulation with redundant signal sets Part II: State of the art , 1987, IEEE Communications Magazine.

[14]  M. Simon,et al.  Trellis Coding with Asymmetric Modulations , 1987, IEEE Trans. Commun..

[15]  N. J. A. Sloane,et al.  New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.

[16]  Gottfried Ungerboeck,et al.  Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.

[17]  J. Massey,et al.  Codes, automata, and continuous systems: Explicit interconnections , 1967, IEEE Transactions on Automatic Control.

[18]  Alan S. Willsky Invertibility of Finite Group Homomorphic Sequential Systems , 1975, Inf. Control..

[19]  G. David Forney,et al.  Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.

[20]  Jack K. Wolf,et al.  On the performance evaluation of trellis codes , 1987, IEEE Trans. Inf. Theory.

[21]  W. D. Cairns THE MATHEMATICAL ASSOCIATION OF AMERICA. , 1917, Science.

[22]  T. Aulin,et al.  Continuous Phase Modulation - Part II: Partial Response Signaling , 1981, IEEE Transactions on Communications.

[23]  G. David Forney,et al.  Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.

[24]  C. E. SHANNON,et al.  A mathematical theory of communication , 1948, MOCO.

[25]  A. Clark,et al.  Rotationally invariant coded PSK signals , 1987 .

[26]  A. Robert Calderbank,et al.  Upper bounds on the minimum distance of trellis codes , 1983, The Bell System Technical Journal.

[27]  Lee-Fang Wei Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space-Part II: Nonlinear Codes , 1984, IEEE J. Sel. Areas Commun..

[28]  James L. Massey,et al.  Inverses of Linear Sequential Circuits , 1968, IEEE Transactions on Computers.

[29]  G. David Forney,et al.  Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..

[30]  A. Robert Calderbank,et al.  A new description of trellis codes , 1984, IEEE Trans. Inf. Theory.