Algebraic Systems, Trellis Codes, and Rotational Invariance
暂无分享,去创建一个
[1] Ezio Biglieri,et al. High-Level Modulation and Coding for Nonlinear Satellite Channels , 1984, IEEE Trans. Commun..
[2] A. Willsky,et al. Finite group homomorphic sequential system , 1972 .
[3] Stephen G. Wilson,et al. Rate 3/4 Convolutional Coding of 16-PSK: Code Design and Performance Study , 1984, IEEE Trans. Commun..
[4] Howard Jay Chizeck. Inverses of finite group systems , 1978 .
[5] S. Pope,et al. The application of error control to communications , 1987, IEEE Communications Magazine.
[6] Heinrich Meyr,et al. Rotationally invariant trellis codes for mPSK modulation , 1987 .
[7] Jr. G. Forney,et al. The viterbi algorithm , 1973 .
[8] T. Aulin,et al. Continuous Phase Modulation - Part I: Full Response Signaling , 1981, IEEE Transactions on Communications.
[9] Ezio Biglieri. Ungerboeck codes do not shape the signal power spectrum , 1986, IEEE Trans. Inf. Theory.
[10] Stephen G. Wilson,et al. An improved algorithm for evaluating trellis phase codes , 1984, IEEE Trans. Inf. Theory.
[11] Alan S. Willsky,et al. Dynamical systems defined on groups : structural properties and estimation. , 1973 .
[12] Elwyn R. Berlekamp,et al. A lower bound to the distribution of computation for sequential decoding , 1967, IEEE Trans. Inf. Theory.
[13] G. Ungerboeck,et al. Trellis-coded modulation with redundant signal sets Part II: State of the art , 1987, IEEE Communications Magazine.
[14] M. Simon,et al. Trellis Coding with Asymmetric Modulations , 1987, IEEE Trans. Commun..
[15] N. J. A. Sloane,et al. New trellis codes based on lattices and cosets , 1987, IEEE Trans. Inf. Theory.
[16] Gottfried Ungerboeck,et al. Channel coding with multilevel/phase signals , 1982, IEEE Trans. Inf. Theory.
[17] J. Massey,et al. Codes, automata, and continuous systems: Explicit interconnections , 1967, IEEE Transactions on Automatic Control.
[18] Alan S. Willsky. Invertibility of Finite Group Homomorphic Sequential Systems , 1975, Inf. Control..
[19] G. David Forney,et al. Coset codes-I: Introduction and geometrical classification , 1988, IEEE Trans. Inf. Theory.
[20] Jack K. Wolf,et al. On the performance evaluation of trellis codes , 1987, IEEE Trans. Inf. Theory.
[21] W. D. Cairns. THE MATHEMATICAL ASSOCIATION OF AMERICA. , 1917, Science.
[22] T. Aulin,et al. Continuous Phase Modulation - Part II: Partial Response Signaling , 1981, IEEE Transactions on Communications.
[23] G. David Forney,et al. Convolutional codes I: Algebraic structure , 1970, IEEE Trans. Inf. Theory.
[24] C. E. SHANNON,et al. A mathematical theory of communication , 1948, MOCO.
[25] A. Clark,et al. Rotationally invariant coded PSK signals , 1987 .
[26] A. Robert Calderbank,et al. Upper bounds on the minimum distance of trellis codes , 1983, The Bell System Technical Journal.
[27] Lee-Fang Wei. Rotationally Invariant Convolutional Channel Coding with Expanded Signal Space-Part II: Nonlinear Codes , 1984, IEEE J. Sel. Areas Commun..
[28] James L. Massey,et al. Inverses of Linear Sequential Circuits , 1968, IEEE Transactions on Computers.
[29] G. David Forney,et al. Efficient Modulation for Band-Limited Channels , 1984, IEEE J. Sel. Areas Commun..
[30] A. Robert Calderbank,et al. A new description of trellis codes , 1984, IEEE Trans. Inf. Theory.