Multistability and hidden attractors in a multilevel DC/DC converter

An attracting periodic, quasiperiodic or chaotic set of a smooth, autonomous system may be referred to as a "hidden attractor" if its basin of attraction does not overlap with the neighborhood of an unstable equilibrium point. Historically, this condition has implied that the basin of attraction for the hidden set in most cases has been so complicated that special analytic and/or numerical techniques have been required to locate the set. By simulating the model of a multilevel DC/DC converter that operates in the regime of high feedback gain, the paper illustrates how pulse-width modulated control can produce complicated structures of attracting and repelling states organized around the basic switching cycle. This leads us to suggest the existence of hidden attractors in such systems as well. In this case, the condition will be that the basin of attraction does not overlap with the fixed point that represents the basic switching cycle. Demonstration of a torus fold instability that produces hidden attractors.Investigation of hidden attractors in piecewise-smooth systems.Study of mutually embedded stable tori in a DC/DC converter.

[1]  Laura Gardini,et al.  Center Bifurcation for a Two-Dimensional Piecewise Linear Map , 2006 .

[2]  Pablo Correa,et al.  Control of a Single-Phase Cascaded H-Bridge Multilevel Inverter for Grid-Connected Photovoltaic Systems , 2009, IEEE Transactions on Industrial Electronics.

[3]  Erik Mosekilde,et al.  Border-collision bifurcations on a two-dimensional torus , 2002 .

[4]  A.V. Peterchev,et al.  A 4-/spl mu/a quiescent-current dual-mode digitally controlled buck converter IC for cellular phone applications , 2004, IEEE Journal of Solid-State Circuits.

[5]  Seth R. Sanders,et al.  Converter IC for Cellular Phone Applications , 2004 .

[6]  H. Nijmeijer,et al.  Dynamics and Bifurcations ofNon - Smooth Mechanical Systems , 2006 .

[7]  Gerard Olivar,et al.  Hopf bifurcation and chaos from torus breakdown in a PWM voltage-controlled DC-DC boost converter , 1999 .

[8]  Tomasz Kapitaniak,et al.  Chaotic Mechanics in Systems with Impacts and Friction , 1999 .

[9]  Laura Gardini,et al.  The Hicksian floor-roof model for two regions linked by interregional trade , 2003 .

[10]  Julien Clinton Sprott,et al.  Simple chaotic flows with a line equilibrium , 2013 .

[11]  Rongrong Wang,et al.  A new finding of the existence of hidden hyperchaotic attractors with no equilibria , 2014, Math. Comput. Simul..

[12]  Sergey P. Kuznetsov,et al.  Generators of quasiperiodic oscillations with three-dimensional phase space , 2013 .

[13]  Russian Federation A simple autonomous quasiperiodic self-oscillator , 2009 .

[14]  Guanrong Chen,et al.  Constructing a chaotic system with any number of equilibria , 2012, 1201.5751.

[15]  Qigui Yang,et al.  Dynamical analysis of a new autonomous 3-D chaotic system only with stable equilibria , 2011 .

[16]  Tere M. Seara,et al.  An Analytical Approach to Codimension-2 Sliding Bifurcations in the Dry-Friction Oscillator , 2010, SIAM J. Appl. Dyn. Syst..

[17]  Erik Mosekilde,et al.  Direct transition from a stable equilibrium to quasiperiodicity in non-smooth systems , 2008 .

[18]  Laura Gardini,et al.  Global bifurcations of Closed Invariant Curves in Two-Dimensional Maps: a Computer Assisted Study , 2005, Int. J. Bifurc. Chaos.

[19]  E Mosekilde,et al.  Torus-Bifurcation Mechanisms in a DC/DC Converter With Pulsewidth-Modulated Control , 2011, IEEE Transactions on Power Electronics.

[20]  Erik Mosekilde,et al.  Border-Collision bifurcations and Chaotic oscillations in a piecewise-Smooth Dynamical System , 2001, Int. J. Bifurc. Chaos.

[21]  Chi K. Tse,et al.  Complex behavior in switching power converters , 2002, Proc. IEEE.

[22]  Nikolay V. Kuznetsov,et al.  IWCFTA2012 Keynote Speech I - Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits , 2012 .

[23]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[24]  Erik Mosekilde,et al.  Multistability and Torus Reconstruction in a DC–DC Converter With Multilevel Control , 2013, IEEE Transactions on Industrial Informatics.

[25]  O. Rössler An equation for continuous chaos , 1976 .

[26]  Bin Wu,et al.  Multilevel Direct Power Control—A Generalized Approach for Grid-Tied Multilevel Converter Applications , 2014, IEEE Transactions on Power Electronics.

[27]  Gaëtan Kerschen,et al.  Topics in Nonlinear Dynamics , 2012 .

[28]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[29]  G. Leonov,et al.  Hidden oscillations in dynamical systems , 2011 .

[30]  Bin Wu,et al.  Recent Advances and Industrial Applications of Multilevel Converters , 2010, IEEE Transactions on Industrial Electronics.

[31]  Erik Mosekilde,et al.  Coexisting tori and torus bubbling in non-smooth systems , 2011 .

[32]  Laura Gardini,et al.  Ternary choices in repeated games and border collision bifurcations , 2012 .

[33]  Erik Mosekilde,et al.  Nonlinear dynamic phenomena in the beer model , 2007 .

[34]  G. A. Leonov,et al.  Hidden Oscillation in Dynamical Systems , 2010 .

[35]  J. Thompson,et al.  Nonlinear Dynamics and Chaos: Geometrical Methods for Engineers and Scientists , 1986 .

[36]  Stig Munk-Nielsen Control in Power Electronics : selected problems , 2002 .

[37]  Erik Mosekilde,et al.  Birth of bilayered torus and torus breakdown in a piecewise-smooth dynamical system , 2006 .

[38]  Laura Gardini,et al.  Growing through chaotic intervals , 2008, J. Econ. Theory.

[39]  G. Leonov,et al.  Hidden attractor in smooth Chua systems , 2012 .

[40]  Erik Mosekilde,et al.  Novel routes to chaos through torus breakdown in non-invertible maps , 2009 .

[41]  Bimal K. Bose,et al.  Modern Power Electronics and AC Drives , 2001 .

[42]  Erik Mosekilde,et al.  Border-collision bifurcations in a dynamic management game , 2006, Comput. Oper. Res..

[43]  Erik Mosekilde,et al.  Equilibrium-torus bifurcation in nonsmooth systems , 2008 .

[44]  From Clocks to Chaos: The Rhythms of Life , 1988 .

[45]  Erik Mosekilde,et al.  High-Feedback Operation of Power Electronic Converters , 2013 .

[46]  Somnath Maity,et al.  Border collision route to quasiperiodicity: Numerical investigation and experimental confirmation. , 2006, Chaos.

[47]  Erik Mosekilde Topics in Nonlinear Dynamics: Applications to Physics, Biology and Economic Systems , 1997 .

[48]  Ebrahim Babaei,et al.  A New Multilevel Converter Topology With Reduced Number of Power Electronic Components , 2012, IEEE Transactions on Industrial Electronics.

[49]  Hossin Hosseinian,et al.  Power Electronics , 2020, 2020 27th International Conference on Mixed Design of Integrated Circuits and System (MIXDES).

[50]  Mario di Bernardo,et al.  Bifurcations in Nonsmooth Dynamical Systems , 2008, SIAM Rev..

[51]  Erik Mosekilde,et al.  Quasi-periodicity and border-collision bifurcations in a DC-DC converter with pulsewidth modulation , 2003 .

[52]  Erik Mosekilde,et al.  Torus birth bifurcations in a DC/DC converter , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[53]  Erik Mosekilde,et al.  Quasiperiodicity and torus breakdown in a power electronic dc/dc converter , 2007, Math. Comput. Simul..

[54]  Laura Gardini,et al.  Border collision bifurcations in boom and bust cycles , 2012, Journal of Evolutionary Economics.

[55]  Erik Mosekilde,et al.  Torus bifurcations in Multilevel converter Systems , 2011, Int. J. Bifurc. Chaos.

[56]  C. Budd,et al.  Review of ”Piecewise-Smooth Dynamical Systems: Theory and Applications by M. di Bernardo, C. Budd, A. Champneys and P. 2008” , 2020 .

[57]  Julien Clinton Sprott,et al.  Elementary quadratic chaotic flows with no equilibria , 2013 .

[58]  Zhouchao Wei,et al.  Dynamical behaviors of a chaotic system with no equilibria , 2011 .

[59]  Leon M. Tolbert,et al.  Modular Multilevel Inverter with New Modulation Method and Its Application to Photovoltaic Grid-Connected Generator , 2013, IEEE Transactions on Power Electronics.

[60]  I. VagaitsevV.,et al.  Localization of hidden Chua ’ s attractors , 2022 .

[61]  E. Lorenz Deterministic nonperiodic flow , 1963 .