Complex-valued contour meshing

An isovalue contour of a function of two complex variables defines a surface in four-space. We present a robust technique for creating polygonal contours of complex-valued functions. The technique, contour meshing, generalizes well to larger dimensions.

[1]  Andrew J. Hanson,et al.  Interactive visualization methods for four dimensions , 1993, Proceedings Visualization '93.

[2]  Bernd Hamann,et al.  The asymptotic decider: resolving the ambiguity in marching cubes , 1991, Proceeding Visualization '91.

[3]  Paul S. Heckbert,et al.  Graphics gems IV , 1994 .

[4]  Christoph M. Hoffmann,et al.  Some techniques for visualizing surfaces in four-dimensional space , 1991, Comput. Aided Des..

[5]  David Banks,et al.  Interactive manipulation and display of surfaces in four dimensions , 1992, I3D '92.

[6]  Eugene L. Allgower,et al.  Numerical continuation methods - an introduction , 1990, Springer series in computational mathematics.

[7]  S. S. Cairns,et al.  Triangulation of the manifold of class one , 1935 .

[8]  William E. Lorensen,et al.  Marching cubes: a high resolution 3D surface construction algorithm , 1996 .

[9]  Stefan Gnutzmann,et al.  Simplicial pivoting for mesh generation of implicity defined surfaces , 1991, Comput. Aided Geom. Des..

[10]  Jean-Pierre Bourguignon,et al.  Mathematische Annalen , 1893 .

[11]  A Koide,et al.  Polyhedral approximation approach to molecular orbital graphics , 1986 .

[12]  B. O. Koopman,et al.  On the covering of analytic loci by complexes , 1932 .

[13]  B. L. Waerden,et al.  Topologische Begründung des Kalküls der abzählenden Geometrie , 1930 .

[14]  E. Allgower,et al.  Numerical Continuation Methods , 1990 .

[15]  Jules Bloomenthal,et al.  An Implicit Surface Polygonizer , 1994, Graphics Gems.

[16]  Jules Bloomenthal,et al.  Polygonization of implicit surfaces , 1988, Comput. Aided Geom. Des..