Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems

The maximum principle is one of the most important properties of solutions of partial differential equations. Its numerical analog, the discrete maximum principle (DMP), is one of the most difficult properties to achieve in numerical methods, especially when the computational mesh is distorted to adapt and conform to the physical domain or the problem coefficients are highly heterogeneous and anisotropic. Violation of the DMP may lead to numerical instabilities such as oscillations and to unphysical solutions such as heat flow from a cold material to a hot one. In this work, we investigate sufficient conditions to ensure the monotonicity of the mimetic finite difference (MFD) method on two- and three-dimensional meshes. These conditions result in a set of general inequalities for the elements of the mass matrix of every mesh element. Efficient solutions are devised for meshes consisting of simplexes, parallelograms and parallelepipeds, and orthogonal locally refined elements as those used in the AMR methodology. On simplicial meshes, it turns out that the MFD method coincides with the mixed-hybrid finite element methods based on the low-order Raviart-Thomas vector space. Thus, in this case we recover the well-established conventional angle conditions of such approximations. Instead, in the other cases a suitable design of the MFD method allows us to formulate a monotone discretization for which the existence of a DMP can be theoretically proved. Moreover, on meshes of parallelograms we establish a connection with a similar monotonicity condition proposed for the Multi-Point Flux Approximation (MPFA) methods. Numerical experiments confirm the effectiveness of the considered monotonicity conditions.

[1]  J. M. Hyman,et al.  Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .

[2]  Sergey Korotov,et al.  On discrete maximum principles for nonlinear elliptic problems , 2007, Math. Comput. Simul..

[3]  M. Shashkov,et al.  The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .

[4]  Konstantin Lipnikov,et al.  A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..

[5]  J. Bramble,et al.  On a Finite Difference Analogue of an Elliptic Boundary Problem which is Neither Diagonally Dominant Nor of Non‐negative Type , 1964 .

[6]  Richard S. Varga,et al.  On a Discrete Maximum Principle , 1966 .

[7]  J. David Moulton,et al.  A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..

[8]  Philippe G. Ciarlet,et al.  Discrete maximum principle for finite-difference operators , 1970 .

[9]  P. G. Ciarlet,et al.  Maximum principle and uniform convergence for the finite element method , 1973 .

[10]  Gianmarco Manzini,et al.  Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .

[11]  Gianmarco Manzini,et al.  Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.

[12]  Ivar Aavatsmark,et al.  Monotonicity of control volume methods , 2007, Numerische Mathematik.

[13]  Daniil Svyatskiy,et al.  A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..

[14]  Ivan Yotov,et al.  Local flux mimetic finite difference methods , 2009, Numerische Mathematik.

[15]  F. Brezzi,et al.  A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .

[16]  Lourenço Beirão da Veiga,et al.  A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.

[17]  Gianmarco Manzini,et al.  Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..

[18]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[19]  L. B. D. Veiga,et al.  A Mimetic discretization method for linear elasticity , 2010 .

[20]  Enrico Bertolazzi,et al.  A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..

[21]  J. Bramble,et al.  New monotone type approximations for elliptic problems , 1964 .

[22]  Gianmarco Manzini,et al.  The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..

[23]  Maryem A.T. Elshebli Discrete maximum principle for the finite element solution of linear non-stationary diffusion-reaction problems , 2008 .

[24]  Sergey Korotov,et al.  The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .

[25]  Mikhail Shashkov,et al.  Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .

[26]  Mikhail Shashkov,et al.  A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .

[27]  James H. Bramble,et al.  Fourth-order finite difference analogues of the Dirichlet problem for Poisson’s equation in three and four dimensions , 1963 .

[28]  M. Shashkov,et al.  A discrete operator calculus for finite difference approximations , 2000 .

[29]  P. G. Ciarlet,et al.  Some results in the theory of nonnegative matrices , 1968 .

[30]  Daniil Svyatskiy,et al.  A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..

[31]  Stein Krogstad,et al.  Multiscale mixed/mimetic methods on corner-point grids , 2008 .

[32]  Konstantin Lipnikov,et al.  Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..

[33]  Todd F. Dupont,et al.  Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..

[34]  Gianmarco Manzini,et al.  A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..

[35]  Tomáš Vejchodský,et al.  A weak discrete maximum principle for hp-FEM , 2007 .

[36]  Antti Hannukainen,et al.  Discrete maximum principle for parabolic problems solved by prismatic finite elements , 2010, Math. Comput. Simul..

[37]  Gianmarco Manzini,et al.  Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .

[38]  Gianmarco Manzini,et al.  Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..

[39]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[40]  Alexandre Ern,et al.  Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .

[41]  M. Shashkov,et al.  A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .

[42]  E. Hope,et al.  Elementare Bemerkungen über die Lösungen partieller differentialgleichungen zweiter Ordnung vom elliptischen Typus , 1927 .

[43]  Gianmarco Manzini,et al.  Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..

[44]  Kazuo Ishihara,et al.  Strong and weak discrete maximum principles for matrices associated with elliptic problems , 1987 .

[45]  Gianmarco Manzini,et al.  An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .

[46]  Konstantin Lipnikov,et al.  High-order mimetic finite difference method for diffusion problems on polygonal meshes , 2008, J. Comput. Phys..

[47]  Sergey Korotov,et al.  Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..