Analysis of the monotonicity conditions in the mimetic finite difference method for elliptic problems
暂无分享,去创建一个
Gianmarco Manzini | Daniil Svyatskiy | Konstantin Lipnikov | K. Lipnikov | G. Manzini | D. Svyatskiy
[1] J. M. Hyman,et al. Mimetic discretizations for Maxwell equations and the equations of magnetic diffusion , 1998 .
[2] Sergey Korotov,et al. On discrete maximum principles for nonlinear elliptic problems , 2007, Math. Comput. Simul..
[3] M. Shashkov,et al. The Numerical Solution of Diffusion Problems in Strongly Heterogeneous Non-isotropic Materials , 1997 .
[4] Konstantin Lipnikov,et al. A Mimetic Discretization of the Stokes Problem with Selected Edge Bubbles , 2010, SIAM J. Sci. Comput..
[5] J. Bramble,et al. On a Finite Difference Analogue of an Elliptic Boundary Problem which is Neither Diagonally Dominant Nor of Non‐negative Type , 1964 .
[6] Richard S. Varga,et al. On a Discrete Maximum Principle , 1966 .
[7] J. David Moulton,et al. A multilevel multiscale mimetic (M3) method for two-phase flows in porous media , 2008, J. Comput. Phys..
[8] Philippe G. Ciarlet,et al. Discrete maximum principle for finite-difference operators , 1970 .
[9] P. G. Ciarlet,et al. Maximum principle and uniform convergence for the finite element method , 1973 .
[10] Gianmarco Manzini,et al. Convergence of the mimetic finite difference method for eigenvalue problems in mixed form , 2011 .
[11] Gianmarco Manzini,et al. Convergence analysis of the high-order mimetic finite difference method , 2009, Numerische Mathematik.
[12] Ivar Aavatsmark,et al. Monotonicity of control volume methods , 2007, Numerische Mathematik.
[13] Daniil Svyatskiy,et al. A monotone finite volume method for advection-diffusion equations on unstructured polygonal meshes , 2010, J. Comput. Phys..
[14] Ivan Yotov,et al. Local flux mimetic finite difference methods , 2009, Numerische Mathematik.
[15] F. Brezzi,et al. A FAMILY OF MIMETIC FINITE DIFFERENCE METHODS ON POLYGONAL AND POLYHEDRAL MESHES , 2005 .
[16] Lourenço Beirão da Veiga,et al. A residual based error estimator for the Mimetic Finite Difference method , 2007, Numerische Mathematik.
[17] Gianmarco Manzini,et al. Error Analysis for a Mimetic Discretization of the Steady Stokes Problem on Polyhedral Meshes , 2010, SIAM J. Numer. Anal..
[18] P. Grisvard. Elliptic Problems in Nonsmooth Domains , 1985 .
[19] L. B. D. Veiga,et al. A Mimetic discretization method for linear elasticity , 2010 .
[20] Enrico Bertolazzi,et al. A Second-Order Maximum Principle Preserving Finite Volume Method for Steady Convection-Diffusion Problems , 2005, SIAM J. Numer. Anal..
[21] J. Bramble,et al. New monotone type approximations for elliptic problems , 1964 .
[22] Gianmarco Manzini,et al. The mimetic finite difference method for the 3D magnetostatic field problems on polyhedral meshes , 2011, J. Comput. Phys..
[23] Maryem A.T. Elshebli. Discrete maximum principle for the finite element solution of linear non-stationary diffusion-reaction problems , 2008 .
[24] Sergey Korotov,et al. The discrete maximum principle for linear simplicial finite element approximations of a reaction-diffusion problem , 2008 .
[25] Mikhail Shashkov,et al. Mimetic finite difference methods for diffusion equations on non-orthogonal non-conformal meshes , 2004 .
[26] Mikhail Shashkov,et al. A tensor artificial viscosity using a mimetic finite difference algorithm , 2001 .
[27] James H. Bramble,et al. Fourth-order finite difference analogues of the Dirichlet problem for Poisson’s equation in three and four dimensions , 1963 .
[28] M. Shashkov,et al. A discrete operator calculus for finite difference approximations , 2000 .
[29] P. G. Ciarlet,et al. Some results in the theory of nonnegative matrices , 1968 .
[30] Daniil Svyatskiy,et al. A constrained finite element method satisfying the discrete maximum principle for anisotropic diffusion problems , 2009, J. Comput. Phys..
[31] Stein Krogstad,et al. Multiscale mixed/mimetic methods on corner-point grids , 2008 .
[32] Konstantin Lipnikov,et al. Convergence of the Mimetic Finite Difference Method for Diffusion Problems on Polyhedral Meshes , 2005, SIAM J. Numer. Anal..
[33] Todd F. Dupont,et al. Failure of the discrete maximum principle for an elliptic finite element problem , 2004, Math. Comput..
[34] Gianmarco Manzini,et al. A Higher-Order Formulation of the Mimetic Finite Difference Method , 2008, SIAM J. Sci. Comput..
[35] Tomáš Vejchodský,et al. A weak discrete maximum principle for hp-FEM , 2007 .
[36] Antti Hannukainen,et al. Discrete maximum principle for parabolic problems solved by prismatic finite elements , 2010, Math. Comput. Simul..
[37] Gianmarco Manzini,et al. Flux reconstruction and solution post-processing in mimetic finite difference methods , 2008 .
[38] Gianmarco Manzini,et al. Convergence Analysis of the Mimetic Finite Difference Method for Elliptic Problems , 2009, SIAM J. Numer. Anal..
[39] Robert J. Plemmons,et al. Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.
[40] Alexandre Ern,et al. Discrete maximum principle for Galerkin approximations of the Laplace operator on arbitrary meshes , 2004 .
[41] M. Shashkov,et al. A Local Support-Operators Diffusion Discretization Scheme for Quadrilateralr-zMeshes , 1998 .
[42] E. Hope,et al. Elementare Bemerkungen über die Lösungen partieller differentialgleichungen zweiter Ordnung vom elliptischen Typus , 1927 .
[43] Gianmarco Manzini,et al. Mimetic finite difference method for the Stokes problem on polygonal meshes , 2009, J. Comput. Phys..
[44] Kazuo Ishihara,et al. Strong and weak discrete maximum principles for matrices associated with elliptic problems , 1987 .
[45] Gianmarco Manzini,et al. An a posteriori error estimator for the mimetic finite difference approximation of elliptic problems , 2008 .
[46] Konstantin Lipnikov,et al. High-order mimetic finite difference method for diffusion problems on polygonal meshes , 2008, J. Comput. Phys..
[47] Sergey Korotov,et al. Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle , 2001, Math. Comput..