MATHEMATICAL MODELS FOR THE DISEASE DYNAMICS OF TUBERCULOSIS

[1]  Miller Bess,et al.  Preventive therapy for tuberculosis. , 1993, The Medical clinics of North America.

[2]  C. Castillo-Chavez,et al.  A Distributed Delay Model for Tuberculosis , 1996 .

[3]  K. Hadeler,et al.  A core group model for disease transmission. , 1995, Mathematical biosciences.

[4]  H. Hethcote,et al.  Disease transmission models with density-dependent demographics , 1992, Journal of mathematical biology.

[5]  H. Hethcote PERIODICITY AND STABILITY IN EPIDEMIC MODELS: A SURVEY , 1981 .

[6]  O. Diekmann,et al.  On the definition and the computation of the basic reproduction ratio R0 in models for infectious diseases in heterogeneous populations , 1990, Journal of mathematical biology.

[7]  Horst R. Thieme,et al.  Convergence results and a Poincaré-Bendixson trichotomy for asymptotically autonomous differential equations , 1992 .

[8]  J. Kent The epidemiology of multidrug-resistant tuberculosis in the United States. , 1993, The Medical clinics of North America.

[9]  P. Hopewell,et al.  Overview of Clinical Tuberculosis , 1994 .

[10]  R. May,et al.  Population Biology of Infectious Diseases , 1982, Dahlem Workshop Reports.

[11]  D. Schenzle An age-structured model of pre- and post-vaccination measles transmission. , 1984, IMA journal of mathematics applied in medicine and biology.

[12]  C. Castillo-Chavez,et al.  To treat or not to treat: the case of tuberculosis , 1997, Journal of mathematical biology.

[13]  E. Hershfield,et al.  Tuberculosis: a comprehensive international approach , 1993 .

[14]  C. Castillo-Chavez,et al.  Optimal Vaccination Strategies for TB in Age-Structure Populations , 1996 .

[15]  S. Levin,et al.  Epidemiological models with age structure, proportionate mixing, and cross-immunity , 1989, Journal of mathematical biology.

[16]  K Dietz,et al.  Proportionate mixing models for age-dependent infection transmission , 1985, Journal of mathematical biology.

[17]  H. Hethcote Qualitative analyses of communicable disease models , 1976 .

[18]  Herbert W. Hethcote,et al.  Epidemiological models for heterogeneous populations: proportionate mixing, parameter estimation, and immunization programs , 1987 .

[19]  A. J. Hall Infectious diseases of humans: R. M. Anderson & R. M. May. Oxford etc.: Oxford University Press, 1991. viii + 757 pp. Price £50. ISBN 0-19-854599-1 , 1992 .

[20]  B. Bloom,et al.  Tuberculosis Pathogenesis, Protection, and Control , 1994 .

[21]  K Dietz,et al.  Epidemiologic interference of virus populations , 1979, Journal of mathematical biology.

[22]  Carlos Castillo-Chavez,et al.  Asymptotically Autonomous Epidemic Models , 1994 .