Edit Distance Based Kernel Functions for Attributed Graph Matching

In this paper we propose the use of a simple kernel function based on the graph edit distance. The kernel function allows us to apply a wide range of statistical algorithms to the problem of attributed graph matching. The function we describe is simple to compute and leads to several convenient interpretations of geometric properties of graphs in their implicit vector space representation. Although the function is not generally positive definite, we show in experiments on real-world data that the kernel approach may result in a significant improvement of the graph matching and classification performance using support vector machines and kernel principal component analysis.

[1]  Horst Bunke,et al.  A graph distance metric based on the maximal common subgraph , 1998, Pattern Recognit. Lett..

[2]  Philip E. Gill,et al.  Practical optimization , 1981 .

[3]  Edwin R. Hancock,et al.  Structural Graph Matching Using the EM Algorithm and Singular Value Decomposition , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[4]  William J. Christmas,et al.  Structural Matching in Computer Vision Using Probabilistic Relaxation , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[5]  Miro Kraetzl,et al.  Graph distances using graph union , 2001, Pattern Recognit. Lett..

[6]  Edwin R. Hancock,et al.  Structural Matching by Discrete Relaxation , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[7]  H. D. Buf,et al.  Automatic diatom identification , 2002 .

[8]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[9]  Hisashi Kashima,et al.  Marginalized Kernels Between Labeled Graphs , 2003, ICML.

[10]  Bernhard Schölkopf,et al.  Dynamic Alignment Kernels , 2000 .

[11]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[12]  Horst Bunke,et al.  An Error-Tolerant Approximate Matching Algorithm for Attributed Planar Graphs and Its Application to Fingerprint Classification , 2004, SSPR/SPR.

[13]  Edwin R. Hancock,et al.  Bayesian graph edit distance , 1999, Proceedings 10th International Conference on Image Analysis and Processing.

[14]  J. Williamson Harmonic Analysis on Semigroups , 1967 .

[15]  Gunnar Rätsch,et al.  An introduction to kernel-based learning algorithms , 2001, IEEE Trans. Neural Networks.

[16]  Alexander J. Smola,et al.  Learning with kernels , 1998 .

[17]  David G. Stork,et al.  Pattern Classification , 1973 .

[18]  Horst Bunke,et al.  On Median Graphs: Properties, Algorithms, and Applications , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  Horst Bunke,et al.  A New Algorithm for Error-Tolerant Subgraph Isomorphism Detection , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[20]  Thomas M. Cover,et al.  Geometrical and Statistical Properties of Systems of Linear Inequalities with Applications in Pattern Recognition , 1965, IEEE Trans. Electron. Comput..

[21]  Thomas Gärtner,et al.  Kernels and Distances for Structured Data , 2004, Machine Learning.

[22]  Hyeran Byun,et al.  A Survey on Pattern Recognition Applications of Support Vector Machines , 2003, Int. J. Pattern Recognit. Artif. Intell..

[23]  John D. Lafferty,et al.  Diffusion Kernels on Graphs and Other Discrete Input Spaces , 2002, ICML.

[24]  C. Watkins Dynamic Alignment Kernels , 1999 .

[25]  Tin Kam Ho,et al.  On classifier domains of competence , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[26]  Horst Bunke,et al.  Graph Edit Distance with Node Splitting and Merging, and Its Application to Diatom Idenfication , 2003, GbRPR.

[27]  David Haussler,et al.  Convolution kernels on discrete structures , 1999 .

[28]  King-Sun Fu,et al.  A distance measure between attributed relational graphs for pattern recognition , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[29]  Alexander J. Smola,et al.  Advances in Large Margin Classifiers , 2000 .

[30]  Alessandra Lumini,et al.  Inexact graph matching for fingerprint classification , 1999 .

[31]  David G. Stork,et al.  Pattern classification, 2nd Edition , 2000 .