Bit allocation in sub-linear time and the multiple-choice knapsack problem
暂无分享,去创建一个
[1] David Pisinger,et al. Algorithms for Knapsack Problems , 1995 .
[2] X. Wu. Globally optimal bit allocation , 1993, [Proceedings] DCC `93: Data Compression Conference.
[3] Ronald L. Graham,et al. An Efficient Algorithm for Determining the Convex Hull of a Finite Planar Set , 1972, Inf. Process. Lett..
[4] Pankaj Batra,et al. Modeling and efficient optimization for object-based scalability and some related problems , 2000, IEEE Trans. Image Process..
[5] R. K. Shyamasundar,et al. Introduction to algorithms , 1996 .
[6] Eitan Zemel,et al. An O(n) Algorithm for the Linear Multiple Choice Knapsack Problem and Related Problems , 1984, Inf. Process. Lett..
[7] Martin Dyer,et al. AN O(n) ALGORITHM FOR THE MULTIPLE-CHOICE , 2007 .
[8] David G. Kirkpatrick,et al. The Ultimate Planar Convex Hull Algorithm? , 1986, SIAM J. Comput..
[9] Donald B. Johnson,et al. The Complexity of Selection and Ranking in X+Y and Matrices with Sorted Columns , 1982, J. Comput. Syst. Sci..
[10] Eve A. Riskin,et al. Optimal bit allocation via the generalized BFOS algorithm , 1991, IEEE Trans. Inf. Theory.
[11] Paolo Toth,et al. Knapsack Problems: Algorithms and Computer Implementations , 1990 .
[12] K. Dudziński,et al. An algorithm for Multiple Choice Knapsack Problem , 1984 .
[13] Antonio Ortega,et al. Bit allocation for dependent quantization with applications to multiresolution and MPEG video coders , 1994, IEEE Trans. Image Process..
[14] S. Martello,et al. Algorithms for Knapsack Problems , 1987 .
[15] K Ramchandran,et al. Best wavelet packet bases in a rate-distortion sense , 1993, IEEE Trans. Image Process..
[16] Yair Shoham,et al. Efficient bit allocation for an arbitrary set of quantizers [speech coding] , 1988, IEEE Trans. Acoust. Speech Signal Process..