Expedited Holonomic Quantum Computation via Net Zero-Energy-Cost Control in Decoherence-Free Subspace

Holonomic quantum computation (HQC) may not show its full potential in quantum speedup due to the prerequisite of a long coherent runtime imposed by the adiabatic condition. Here we show that the conventional HQC can be dramatically accelerated by using external control fields, of which the effectiveness is exclusively determined by the integral of the control fields in the time domain. This control scheme can be realized with net zero energy cost and it is fault-tolerant against fluctuation and noise, significantly relaxing the experimental constraints. We demonstrate how to realize the scheme via decoherence-free subspaces. In this way we unify quantum robustness merits of this fault-tolerant control scheme, the conventional HQC and decoherence-free subspace, and propose an expedited holonomic quantum computation protocol.

[1]  D. DiVincenzo,et al.  The Physical Implementation of Quantum Computation , 2000, quant-ph/0002077.

[2]  Paolo Zanardi,et al.  Holonomic quantum computation , 1999 .

[3]  Guilu Long,et al.  Experimental realization of nonadiabatic holonomic quantum computation. , 2013, Physical review letters.

[4]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[5]  Lian-Ao Wu,et al.  One-component dynamical equation and noise-induced adiabaticity , 2013, 1305.4845.

[6]  Lian-Ao Wu,et al.  Fast quantum algorithm for EC3 problem with trapped ions , 2014 .

[7]  A. G. White,et al.  Experimental verification of decoherence-free subspaces. , 2000, Science.

[8]  D. Deutsch Quantum computational networks , 1989, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[9]  Institute for Scientific Interchange Foundation,et al.  Stabilizing Quantum Information , 1999 .

[10]  Viola,et al.  Theory of quantum error correction for general noise , 2000, Physical review letters.

[11]  Hui Sun,et al.  Geometric entangling gates in decoherence-free subspaces with minimal requirements. , 2009, Physical review letters.

[12]  Daniel A Lidar,et al.  Simple proof of equivalence between adiabatic quantum computation and the circuit model. , 2007, Physical review letters.

[13]  W. Magnus On the exponential solution of differential equations for a linear operator , 1954 .

[14]  F. Schmidt-Kaler,et al.  Realization of the Cirac–Zoller controlled-NOT quantum gate , 2003, Nature.

[15]  Lian-Ao Wu,et al.  Nonperturbative leakage elimination operators and control of a three-level system. , 2015, Physical review letters.

[16]  Daniel A Lidar,et al.  Magnetic resonance realization of decoherence-free quantum computation. , 2003, Physical review letters.

[17]  R Laflamme,et al.  Experimental Realization of Noiseless Subsystems for Quantum Information Processing , 2001, Science.

[18]  Stefan W. Hell,et al.  Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin , 2014, Nature Communications.

[19]  V. Fock,et al.  Beweis des Adiabatensatzes , 1928 .

[20]  M. A. Rowe,et al.  A Decoherence-Free Quantum Memory Using Trapped Ions , 2001, Science.

[21]  K. B. Whaley,et al.  Theory of decoherence-free fault-tolerant universal quantum computation , 2000, quant-ph/0004064.

[22]  Erik Sjöqvist,et al.  Nonadiabatic holonomic quantum computation in decoherence-free subspaces. , 2012, Physical review letters.

[23]  D. M. Tong,et al.  Non-adiabatic holonomic quantum computation , 2011, 1107.5127.

[24]  Mikio Nakahara,et al.  Realization of arbitrary gates in holonomic quantum computation , 2003 .

[25]  S. Urabe,et al.  Realization of holonomic single-qubit operations , 2013, 1304.6215.

[26]  Frank Wilczek,et al.  Appearance of Gauge Structure in Simple Dynamical Systems , 1984 .

[27]  M. Stewart Siu From quantum circuits to adiabatic algorithms , 2005 .

[28]  M. Berry Quantal phase factors accompanying adiabatic changes , 1984, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[29]  Daniel A Lidar,et al.  Fault-tolerant holonomic quantum computation. , 2009, Physical review letters.

[30]  D A Lidar,et al.  Holonomic quantum computation in decoherence-free subspaces. , 2005, Physical review letters.

[31]  S. Berger,et al.  Experimental realization of non-Abelian non-adiabatic geometric gates , 2013, Nature.

[32]  C. Zu,et al.  Experimental realization of universal geometric quantum gates with solid-state spins , 2014, Nature.