The needlets bispectrum

The purpose of this paper is to join two different threads of the recent literature on random fields on the sphere, namely the statisti- cal analysis of higher order angular power spectra on one hand, and the construction of second-generation wavelets on the sphere on the other. To this aim, we introduce the needlets bispectrum and we derive a number of convergence results. Here, the limit theory is developed in the high resolu- tion sense. The leading motivation of these results is the need for statistical procedures for searching non-Gaussianity in Cosmic Microwave Background radiation. AMS 2000 subject classifications: Primary 62G20; secondary 62M15, 60B15, 60G60. Keywords and phrases: Bispectrum, Needlets, Spherical Random Fields, Cosmic Microwave Background Radiation, High Resolution Asymptotics.

[1]  S. Matarrese,et al.  Non-Gaussianity from inflation: theory and observations , 2004 .

[2]  Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background , 2007, astro-ph/0701921.

[3]  David N. Spergel,et al.  Acoustic signatures in the primary microwave background bispectrum , 2000, astro-ph/0005036.

[4]  R. Wilson Modern Cosmology , 2004 .

[5]  Fr'ed'eric Guilloux,et al.  Practical wavelet design on the sphere , 2007, 0706.2598.

[6]  R. Adler,et al.  Random Fields and Geometry , 2007 .

[7]  Pencho Petrushev,et al.  Decomposition of Besov and Triebel–Lizorkin spaces on the sphere , 2006 .

[8]  B. Wandelt,et al.  Evidence of primordial non-Gaussianity (fNL) in the Wilkinson microwave anisotropy probe 3-year data at 2.8sigma. , 2008, Physical review letters.

[9]  P. Vielva,et al.  The Non-Gaussian Cold Spot in the 3 Year Wilkinson Microwave Anisotropy Probe Data , 2007 .

[10]  Domenico Marinucci,et al.  Integrated Sachs-Wolfe effect from the cross correlation of WMAP 3 year and the NRAO VLA sky survey data: New results and constraints on dark energy , 2006 .

[11]  Central limit theorems for generalized multilinear forms , 1990 .

[12]  D. Marinucci A central limit theorem and higher order results for the angular bispectrum , 2005, math/0509430.

[13]  P. Dejong Central limit theorems for generalized multilinear forms , 1989 .

[14]  D. Mattis Quantum Theory of Angular Momentum , 1981 .

[15]  P. Baldi,et al.  Some characterizations of the spherical harmonics coefficients for isotropic random fields , 2006, math/0606709.

[16]  Benjamin D. Wandelt,et al.  Fast Estimator of Primordial Non-Gaussianity from Temperature and Polarization Anisotropies in the Cosmic Microwave Background. II. Partial Sky Coverage and Inhomogeneous Noise , 2008 .

[17]  Pencho Petrushev,et al.  Localized Tight Frames on Spheres , 2006, SIAM J. Math. Anal..

[18]  D. Marinucci High-resolution asymptotics for the angular bispectrum of spherical random fields , 2005, math/0502434.

[19]  K. Gorski,et al.  HEALPix: A Framework for High-Resolution Discretization and Fast Analysis of Data Distributed on the Sphere , 2004, astro-ph/0409513.

[20]  Pierre Vandergheynst,et al.  Wavelets on the Two-Sphere and Other Conic Sections , 2007 .

[21]  P. Baldi,et al.  Asymptotics for spherical needlets , 2006, math/0606599.

[22]  J. D. McEwen,et al.  Complex Data Processing: Fast Wavelet Analysis on the Sphere , 2007, 0704.3144.

[23]  L. Cayón,et al.  The non-Gaussian cold spot in WMAP , 2006 .

[24]  S. Matarrese,et al.  Non-Gaussianity from Inflation , 2001, hep-ph/0112261.

[25]  Paolo Baldi,et al.  Spherical needlets for cosmic microwave background data analysis , 2008 .

[26]  Matias Zaldarriaga,et al.  The shape of non-Gaussianities , 2004 .

[27]  L. Cayón,et al.  The Non-Gaussian Cold Spot in the 3 Year Wilkinson Microwave Anisotropy Probe Data , 2006, astro-ph/0603859.

[28]  M. Cruz,et al.  The non‐Gaussian cold spot in Wilkinson Microwave Anisotropy Probe: significance, morphology and foreground contribution , 2006, astro-ph/0601427.

[29]  G. Peccati,et al.  Group representations and high-resolution central limit theorems for subordinated spherical random fields , 2007, 0706.2851.

[30]  Domenico Marinucci,et al.  Search for non-Gaussianity in pixel, harmonic and wavelet space: compared and combined , 2004 .

[31]  The integrated bispectrum as a test of CMB non-Gaussianity: detection power and limits on f_NL with WMAP data , 2005, astro-ph/0512112.

[32]  O. V. Verkhodanov,et al.  Gauss - Legendre sky pixelization (GLESP) for CMB maps , 2005 .

[33]  Hrushikesh Narhar Mhaskar,et al.  Spherical Marcinkiewicz-Zygmund inequalities and positive quadrature , 2001, Math. Comput..

[34]  Pencho Petrushev,et al.  Needlet algorithms for estimation in inverse problems , 2007, 0705.0274.

[35]  P. Baldi,et al.  Spherical Needlets for CMB Data Analysis , 2007, 0707.0844.

[36]  M. Straf Weak convergence of stochastic processes with several parameters , 1972 .

[37]  Paolo Baldi,et al.  High frequency asymptotics for wavelet-based tests for Gaussianity and isotropy on the torus , 2006 .

[38]  M. P. Hobson,et al.  Cosmological Applications of a Wavelet Analysis on the Sphere , 2007, 0704.3158.

[39]  P. Baldi,et al.  Subsampling needlet coefficients on the sphere , 2007, 0706.4169.

[40]  Giovanni Peccati,et al.  Central limit theorems for sequences of multiple stochastic integrals , 2005 .