New RuII (arene) complexes with halogen-substituted bis- and tris(pyrazol-1-yl)borate ligands.

[RuCl(arene)(μ-Cl)]2 dimers were treated in a 1:2 molar ratio with sodium or thallium salts of bis- and tris(pyrazolyl)borate ligands [Na(Bp(Br3))], [Tl(Tp(Br3))], and [Tl(Tp(iPr, 4Br))]. Mononuclear neutral complexes [RuCl(arene)(κ(2)-Bp(Br3))] (1: arene=p-cymene (cym); 2: arene=hexamethylbenzene (hmb); 3: arene=benzene (bz)), [RuCl(arene)(κ(2)-Tp(Br3))] (4: arene=cym; 6: arene=bz), and [RuCl(arene)(κ(2)-Tp(iPr, 4Br))] (7: arene=cym, 8: arene=hmb, 9: arene=bz) have been always obtained with the exception of the ionic [Ru2 (hmb)2-(μ-Cl)3][Tp(Br3)] (5'), which formed independently of the ratio of reactants and reaction conditions employed. The ionic [Ru-(CH3OH)(cym)(κ(2)-Bp(Br3))][X] (10: X=PF6, 12: X=O3SCF3) and the neutral [Ru(O2CCF3)(cym)(κ(2)-Bp(Br3))] (11) have been obtained by a metathesis reaction with corresponding silver salts. All complexes 1-12 have been characterized by analytical and spectroscopic data (IR, ESI-MS, (1)H and (13)C NMR spectroscopy). The structures of the thallium and calcium derivatives of ligand Tp(Br3), [Tl(Tp(Br3))] and [Ca(dmso)6][Tp(Br3)]2 ⋅2 DMSO, of the complexes 1, 4, 5', 6, 11, and of the decomposition product [RuCl(cym)(Hpz(iPr, 4Br))2][Cl] (7') have been confirmed by using single-crystal X-ray diffraction. Electrochemical studies showed that 1-9 and 11 undergo a single-electron Ru(II) →Ru(III) oxidation at a potential, measured by cyclic voltammetry, which allows comparison of the electron-donor characters of the bis- and tris(pyrazol-1-yl)borate and arene ligands, and to estimate, for the first time, the values of the Lever EL ligand parameter for Bp(Br3), Tp(Br3), and Tp(iPr, 4Br). Theoretical calculations at the DFT level indicated that both oxidation and reduction of the Ru complexes under study are mostly metal-centered with some involvement of the chloride ligand in the former case, and also demonstrated that the experimental isolation of the μ(3)-binuclear complex 5' (instead of the mononuclear 5) is accounted for by the low thermodynamic stability of the latter species due to steric reasons.

[1]  A. Pombeiro,et al.  Redox potential parameterization in coordination compounds with polydentate scorpionate and benzene ligands , 2012 .

[2]  Jinfang Zhang Hexakis(dimethyl sulfoxide-κO)calcium μ6-oxido-dodecakis-μ2-oxido-hexaoxidohexatungstate(VI) , 2012, Acta crystallographica. Section E, Structure reports online.

[3]  E. Monti,et al.  Ruthenium-arene complexes of curcumin: X-ray and density functional theory structure, synthesis, and spectroscopic characterization, in vitro antitumor activity, and DNA docking studies of (p-cymene)Ru(curcuminato)chloro. , 2012, Journal of medicinal chemistry.

[4]  L. Martins,et al.  Ruthenium(II) Arene Complexes Bearing Tris(pyrazolyl)methanesulfonate Capping Ligands.Electrochemistry, Spectroscopic, and X-ray Structural Characterization , 2011 .

[5]  I. Císařová,et al.  Tri-μ-chlorido-bis[(η6-hexamethylbenzene)ruthenium(II)] tetrachloridoferrate(III) , 2011, Acta crystallographica. Section E, Structure reports online.

[6]  J. Nakazawa,et al.  Dioxygen activation and substrate oxygenation by a p-nitrothiophenolatonickel complex: unique effects of an acetonitrile solvent and the p-nitro group of the ligand. , 2011, Inorganic chemistry.

[7]  P. Sadler,et al.  Metal complexes as DNA intercalators. , 2011, Accounts of chemical research.

[8]  L. Martins,et al.  Coordination Chemistry of the (η6-p-Cymene)ruthenium(II) Fragment with Bis-, Tris-, and Tetrakis(pyrazol-1-yl)borate Ligands: Synthesis, Structural, Electrochemical, and Catalytic Diastereoselective Nitroaldol Reaction Studies , 2011 .

[9]  A. Casini,et al.  Organometallic ruthenium-based antitumor compounds with novel modes of action , 2011 .

[10]  G. Albertin,et al.  Preparation of Pyrazole–Pyrazolate Half-Sandwich Complexes of Ruthenium and Osmium , 2011 .

[11]  G. Süss-Fink Arene ruthenium complexes as anticancer agents. , 2010, Dalton transactions.

[12]  L. Martins,et al.  Novel Scorpionate and Pyrazole Dioxovanadium Complexes, Catalysts for Carboxylation and Peroxidative Oxidation of Alkanes , 2010 .

[13]  R. E. Marsh Space groups P1 and Cc: how are they doing? , 2009, Acta crystallographica. Section B, Structural science.

[14]  C. Pettinari,et al.  Switching between kappa(2) and kappa(3) bis(pyrazol-1-yl)acetate ligands by tuning reaction conditions: synthesis, spectral, electrochemical, structural, and theoretical studies on arene-Ru(II) derivatives of bis(azol-1-yl)acetate ligands. , 2009, Inorganic chemistry.

[15]  M. Wagner,et al.  Copper complexes of mono- and ditopic [(methylthio)methyl]borates: missing links and linked systems en route to copper enzyme models. , 2008, Chemistry.

[16]  C. Pettinari Scorpionates II: Chelating Borate Ligands , 2008 .

[17]  M. Peruzzini,et al.  Synthesis, Reactivity, X-ray Crystal Structures and Electrochemical Behaviour of Water-Soluble [Tris(pyrazolyl)borato]ruthenium(II) Complexes of 1,3,5-Triaza-7-phosphaadamantane (PTA) , 2007 .

[18]  G. Süss-Fink,et al.  1,1′-Ferrocene dicarboxylic acid pyridin-4-yl ester: A new bidentate ligand in arene ruthenium chemistry , 2007 .

[19]  L. Martins,et al.  Areneruthenium(II) 4-acyl-5-pyrazolonate derivatives: coordination chemistry, redox properties, and reactivity. , 2007, Inorganic chemistry.

[20]  A. Pombeiro Characterization of Coordination Compounds by Electrochemical Parameters , 2007 .

[21]  E. Álvarez,et al.  Unusual polybrominated polypyrazolylborates and their copper(I) complexes: synthesis, characterization, and catalytic activity. , 2007, Inorganic chemistry.

[22]  P. Sadler,et al.  Structure-activity relationships for cytotoxic ruthenium(II) arene complexes containing N,N-, N,O-, and O,O-chelating ligands. , 2006, Journal of medicinal chemistry.

[23]  M. Beller,et al.  Synthetic, spectral and catalytic activity studies of ruthenium bipyridine and terpyridine complexes: Implications in the mechanism of the ruthenium(pyridine-2,6-bisoxazoline)(pyridine-2,6-dicarboxylate)-catalyzed asymmetric epoxidation of olefins utilizing H2O2 , 2006 .

[24]  P. Dyson,et al.  Classical and Non‐Classical Ruthenium‐Based Anticancer Drugs: Towards Targeted Chemotherapy , 2006 .

[25]  Michael T. Taylor,et al.  Synthesis of zinc, copper, nickel, cobalt, and iron complexes using tris(pyrazolyl)methane sulfonate ligands: a structural model for N,N,O binding in metalloenzymes. , 2006, Inorganic chemistry.

[26]  M. M. Díaz‐Requejo,et al.  Copper, silver and gold-based catalysts for carbene addition or insertion reactions , 2005 .

[27]  A. Pombeiro Electron-donor/acceptor properties of carbynes, carbenes, vinylidenes, allenylidenes and alkynyls as measured by electrochemical ligand parameters , 2005 .

[28]  M. Wagner,et al.  A chloro-bridged dimanganese complex and an oxo-bridged dititanium complex of a ditopic bis(pyrazol-1-yl)borate ligand. , 2005, Inorganic chemistry.

[29]  P. Sadler,et al.  Organometallic chemistry, biology and medicine: ruthenium arene anticancer complexes. , 2005, Chemical communications.

[30]  B. Keppler,et al.  Tuning of redox properties for the design of ruthenium anticancer drugs: part 2. Syntheses, crystal structures, and electrochemistry of potentially antitumor [Ru III/II Cl6-n(Azole)n]z(n = 3, 4, 6) complexes. , 2005, Inorganic chemistry.

[31]  J. Canivet,et al.  Cationic arene ruthenium complexes containing chelating 1,10-phenanthroline ligands , 2005 .

[32]  I. Persson,et al.  The structure of dimethylsulfoxide-solvated magnesium and calcium ions in solution and the solid state, and an overview of the coordination chemistry of hydrated and solvated alkaline earth metal ions , 2005 .

[33]  M. Fujita,et al.  Coordination assemblies from a Pd(II)-cornered square complex. , 2005, Accounts of chemical research.

[34]  B. Keppler,et al.  Tuning of redox potentials for the design of ruthenium anticancer drugs -- an electrochemical study of [trans-RuCl(4)L(DMSO)](-) and [trans-RuCl(4)L(2)](-) complexes, where L = imidazole, 1,2,4-triazole, indazole. , 2004, Inorganic chemistry.

[35]  V. Cadierno,et al.  Water-soluble ruthenium(II) catalysts [RuCl2(eta6-arene)[P(CH2OH)3]] for isomerization of allylic alcohols and alkyne hydration. , 2004, Dalton transactions.

[36]  M. Beller,et al.  Ruthenium‐katalysierte asymmetrische Epoxidierung mit Wasserstoffperoxid als Oxidationsmittel , 2004 .

[37]  M. Beller,et al.  Development of a ruthenium-catalyzed asymmetric epoxidation procedure with hydrogen peroxide as the oxidant. , 2004, Angewandte Chemie.

[38]  S. Fukuzumi,et al.  Aqueous polymerization of styrene promoted by water-soluble robust ruthenium hydride complexes , 2004 .

[39]  W. Dougherty,et al.  Efficient mechanochemical synthesis of tris(pyrazolylborate) complexes of manganese(II), cobalt(II) and nickel(II) , 2004 .

[40]  M. M. Díaz‐Requejo,et al.  Alkane dehydrogenation by sequential, double C-H bond activation by TpBr3Ir(C2H4)2 (Tpbr3 = hydrotris(3,4,5-tribromo)pyrazolylborate) , 2004 .

[41]  J. Bats,et al.  Bitopic Bis- and Tris(1-pyrazolyl)borate Ligands: Syntheses and Structural Characterization , 2004 .

[42]  M. Jaworska,et al.  Synthesis, molecular, crystal and electronic structures of [(C6H6)RuCl(HPz)2]Cl and [(C6H6)RuCl2(Me2HPz)] , 2004 .

[43]  S. Cordier,et al.  Rhenium octahedral cluster segregation in selected countercation matrices: synthesis and structure of My[(Re6Si6Bri2)Bra6] (M = (n-Bu4N)+, y = 2; M = [Ca(DMSO)6]2+ or [Cs2(18-crown-6)3]2+, y = 1) , 2003 .

[44]  S. Ogo,et al.  pH-Dependent Transfer Hydrogenation of Ketones with HCOONa as a Hydrogen Donor Promoted by (η6-C6Me6)Ru Complexes , 2002 .

[45]  A. Rheingold,et al.  Novel scorpionate ligands devoid of C–H bonds: BpBr3 and TpBr3 , 2002 .

[46]  C. Janiak,et al.  Thallium(I) complexes with modified poly(pyrazolyl)borate ligands—metal-ligand coordination and crystal packing , 2002 .

[47]  N. Avarvari,et al.  A series of soluble, discrete homo and heteroleptic Ca(II) complexes of hexanuclear sulfidochloride rhenium clusters, [Ca(X)n(Y)m][Re6S6Cl8], (n=6, m=0, X=DMF, THF, DMSO; n=4, m=3, X=MeCN, Y=THF, dioxane) and the 1D co-ordination polymer [Ca(MeCN)3(OH2)2(dioxane)2][Re6S6Cl8]·(dioxane)(MeCN) , 2002 .

[48]  John M. Brown,et al.  Ruthenium-catalyzed oxidative Heck reactions. , 2002, Angewandte Chemie.

[49]  H. Rhyoo,et al.  The first Ru(II)-catalysed asymmetric hydrogen transfer reduction of aromatic ketones in aqueous media. , 2001, Chemical communications.

[50]  C. Slugovc,et al.  Hydrogen-transfer catalyzed by half-sandwich Ru(II) aminophosphine complexes , 2001 .

[51]  A. Pombeiro Electron-transfer induced isomerizations of coordination compounds , 2001 .

[52]  M. Shu,et al.  Sulfur-rich zinc chemistry: new tris(thioimidazolyl)hydroborate ligands and their zinc complex chemistry related to the structure and function of alcohol dehydrogenase. , 2001, Inorganic chemistry.

[53]  D. O′Hare,et al.  Variable coordination modes of hydrotris(3-isopropyl-4-bromopyrazolyl)borate (Tp') in Fe(II), Mn(II), Cr(II), and Cr(III) Complexes: formation of MTp'Cl (M = Fe and Mn), structural isomerism in CrTp'(2), and the observation of Tp' (-) as an uncoordinated anion. , 2001, Inorganic chemistry.

[54]  D. Tellers,et al.  Comparison of the Relative Electron-Donating Abilities of Hydridotris(pyrazolyl)borate and Cyclopentadienyl Ligands: Different Interactions with Different Transition Metals , 2000 .

[55]  David T. Vodak,et al.  Synthesis and Characterization of [(η6-arene)Ru(R3P)Cl2] Complexes , 2000 .

[56]  J. Kovács,et al.  Enantioselective hydride transfer hydrogenation of ketones catalyzed by [(η6-p-cymene)Ru(amino acidato)Cl] and [(η6-p-cymene)Ru(amino acidato)]3(BF4)3 complexes , 2000 .

[57]  Pankaj Sharma,et al.  Synthesis, characterization and crystal structure of [(η6-C6Me6)Ru(μ-Cl)3Ru(η6-C6Me6)]PF6 , 1999 .

[58]  V. Gramlich,et al.  SYNTHETIC ROUTES FOR HYDROTRIS(PYRAZOLYL)BORATE COMPLEXES OF RHODIUM(III) , 1999 .

[59]  W. Jones,et al.  11B NMR: A New Tool for the Determination of Hapticity of Tris(pyrazolyl)borate Ligands , 1998 .

[60]  C. Janiak,et al.  The Structure of Hydrotris(pyrazolyl)boratothallium(I) , 1998 .

[61]  V. Barone,et al.  Quantum Calculation of Molecular Energies and Energy Gradients in Solution by a Conductor Solvent Model , 1998 .

[62]  M. A. Bennett,et al.  Recent advances in the chemistry of arene complexes of ruthenium(0) and ruthenium(II) , 1997 .

[63]  A. Pombeiro Molecular Electrochemistry in Coordination Chemistry: Metal‐Ligand Bonds and Their Activation by Electron Transfer , 1997 .

[64]  S. Hikichi,et al.  Synthesis and Structure Determination of Rh−diene Complexes with the Hydridotris(3,5-diisopropylpyrazolyl)borate Ligand, TpiPrRh(diene) (diene = cod, nbd): Dependence of the ν(B−H) Values on the Hapticity of the TpiPr Ligand (κ2 vs κ3)1 , 1997 .

[65]  Xintao Wu,et al.  The Heterobimetallic Polymeric Zigzag Chain [(W(4)S(16)Ag(4))(4-)](n) Derived from the Linear Chain [(WS(4)Ag)(-)](n): Synthesis, Characterization, and Structure of [W(4)S(16)Ag(4).2Ca(DMSO)(6)](n) (DMSO = Dimethyl Sulfoxide). , 1996, Inorganic chemistry.

[66]  D. Tocher,et al.  Synthesis and characterization of (arene)ruthenium(II) poly(pyrazolyl)borate and poly(pyrazolyl)methane complexes , 1996 .

[67]  R. Noyori,et al.  Ruthenium(II)-Catalyzed Asymmetric Transfer Hydrogenation of Ketones Using a Formic Acid−Triethylamine Mixture , 1996 .

[68]  D. Tocher,et al.  Cyclohexadienyl derivatives of (ν6-arene) (hydrido tris(pyrazolyl) borato) ruthenium(II) compounds , 1996 .

[69]  Jacopo Tomasi,et al.  Molecular Interactions in Solution: An Overview of Methods Based on Continuous Distributions of the Solvent , 1994 .

[70]  A. Pombeiro,et al.  Redox potential and substituent effects in ferrocene derivatives: II☆ , 1994 .

[71]  R. Frech,et al.  Vibrational spectroscopic and ab initio molecular orbital studies of the normal and 13C-labelled trifluoromethanesulfonate anion , 1994 .

[72]  W. B. Gleason,et al.  Structure of tri--chloro-bis[(?6-benzene)ruthenium(II)] hexafluoroarsenate , 1993 .

[73]  A. Becke Density-functional thermochemistry. III. The role of exact exchange , 1993 .

[74]  W. Fuss,et al.  Chlor(trifluorphosphan)gold(I), eine einfache flüchtige Notizen: Goldverbindung/Chloro(trifluorophosphane)gold(I), a Simple Volatile Gold Compound , 1992 .

[75]  A. Pombeiro,et al.  Redox potential and substituent effects at ferrocene derivatives. Estimates of Hammett σp and taft polar σ substituent constants , 1991 .

[76]  T. Kruck,et al.  Mitteilungen über Metalltrifluorphosphan‐Komplexe, 51. Hexakis(trifluorphosphan)vanadium(0)‐Synthese, Eigenschaften und Reaktionen , 1990 .

[77]  A. B. P. Lever,et al.  Electrochemical parametrization of metal complex redox potentials, using the ruthenium(III)/ruthenium(II) couple to generate a ligand electrochemical series , 1990 .

[78]  H. Stoll,et al.  Energy-adjustedab initio pseudopotentials for the second and third row transition elements , 1990 .

[79]  P. Domaille,et al.  Steric effects in polypyrazolylborate ligands. Poly(3-isopropylpyrazolyl)borates: ligands of intermediate steric requirements , 1989 .

[80]  Parr,et al.  Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. , 1988, Physical review. B, Condensed matter.

[81]  G. Lawrance Coordinated trifluoromethanesulfonate and fluorosulfate , 1986 .

[82]  Glen B. Deacon,et al.  Relationships between the carbon-oxygen stretching frequencies of carboxylato complexes and the type of carboxylate coordination , 1980 .

[83]  W. Geary The use of conductivity measurements in organic solvents for the characterisation of coordination compounds , 1971 .

[84]  T. Kruck Trifluorphosphin‐Komplexe von Übergangsmetallen , 1964 .

[85]  G. Sheldrick A short history of SHELX. , 2008, Acta crystallographica. Section A, Foundations of crystallography.

[86]  A. Lever 2.19 – Ligand Electrochemical Parameters and Electrochemical–Optical Relationships , 2003 .

[87]  S. Trofimenko Scorpionates: The Coordination Chemistry of Polypyrazolylborate Ligands , 1999 .

[88]  M. Wagner,et al.  Sterically demanding ferrocene-based tris(1-pyrazolyl)borate ligands , 1998 .

[89]  Andrea G. Bishop,et al.  Synthesis, NMR studies, and molecular orbital calculations on cyclohexadienyl derivatives of (eta(6)-arene)tris(pyrazolyl)ruthenium(II) compounds , 1998 .

[90]  C. Janiak HYDROTRIS(PYRAZOLYL)BORATE THALLIUM(I) [TpTI(I)] CHEMISTRY SYNTHESES AND APPLICATIONS , 1998 .

[91]  M. Picquet,et al.  Cationic ruthenium allenylidene complexes as a new class of performing catalysts for ring closing metathesis , 1998 .

[92]  D. Tocher,et al.  Synthesis and characterisation of ruthenium(II) arenecomplexes containing κ3- andκ2-poly(pyrazolyl)borates andmethanes , 1997 .

[93]  D. Braga,et al.  Molecular Structure, Dynamics, and Crystal Organization of [(.mu.-Cl)3{(.eta.6-arene)Ru}2][BF4] (Arene = C6H6 and C6H5Me) and a Bonding Study by Extended-Hueckel Calculations , 1995 .

[94]  J. McCleverty,et al.  Reactions of benzene–ruthenium(II) complexes with pyrazoles. Possible formation of amidine complexes [Ru(η-C6H6){NHCMe(R2pz)}(R2Hpz)]2+(R = H or Me, Hpz = pyrazole) , 1986 .

[95]  G. Ferguson,et al.  Structural evidence for a new type of π-arene complex containing poly-(1-pyrazolyl)borate ligands and carbocyclic π-acceptor ligands. X-Ray analysis of [tetrakis-(1-pyrazolyl)borato](h6–benzene)ruthenium(II) hexafluorophosphate , 1973 .

[96]  H. Bürger,et al.  Infrarot-Spektren und Normalkoordinatenanalyse von Salzen mit den AnionenX3CSO3− (X=H, D, F, Cl) , 1970 .

[97]  T. Kruck Trifluorophosphine Complexes of Transition Metals , 1967 .