Systematic mask synthesis for surface micromachined microelectromechanical systems

In the context of designing surface-micromachined microelectromechanical systems (MEMS), there does not appear to be systematic means, with the exception of parametrized layout models, to generate the mask data after the geometric model of a MEMS device is refined through behavioral simulations. This paper focuses on automatically generating masks, given a geometric model of the MEMS device and the process sequence (referred to here as the inverse problem). This necessitates a systematic solution of the forward problem, which involves automatically generating a geometric model of the MEMS device given the masks. A systematic and implementation-independent framework for the geometric modeling of MEMS is presented in order to solve the forward and inverse problems for general surface-micromachined devices. In particular, the geometric problem of mask synthesis is reduced to a system of linear equations.

[1]  V. Kumar,et al.  An Approach to Modeling & Representation of Heterogeneous Objects , 1998 .

[2]  E. Antonsson,et al.  Emergent faces in crystal etching , 1994 .

[3]  Jacob K. White,et al.  A computer-aided design system for microelectromechanical systems (MEMCAD) , 1992 .

[4]  S. D. Senturia,et al.  CAD challenges for microsensors, microactuators, and microsystems , 1998, Proc. IEEE.

[5]  J. Sniegowski Multi-level polysilicon surface-micromachining technology: Applications and issues , 1996 .

[6]  Mohammed Hasanuzzaman,et al.  Process compilation of thin film microdevices , 1996, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[7]  Srikanth Kannapan,et al.  3D geometric simulation of MEMS fabrication processes: a semantic approach , 1997, SMA '97.

[8]  M. Madou Fundamentals of microfabrication , 1997 .

[9]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[10]  William H. Press,et al.  Numerical recipes in C. The art of scientific computing , 1987 .

[11]  E K Antonsson,et al.  Automated Mask-Layout and Process Synthesis for MEMS , 2000 .

[12]  Hui Li,et al.  EVOLUTIONARY TECHNIQUES IN MEMS SYNTHESIS , 1998 .

[13]  M. H. Zaman,et al.  Automatic generation of thin film process flows. I. Basic algorithms , 1999 .

[14]  Vijay Chandru,et al.  Volume modelling for emerging manufacturing technologies , 1997 .

[15]  E K Antonsson,et al.  Self-Adapting Vertices for Mask-Layout Synthesis , 2000 .

[16]  Michael A. Wesley,et al.  OYSTER: A Study of Integrated Circuits as Three Dimensional Structures , 1983, IBM J. Res. Dev..

[17]  M. H. Zaman,et al.  Automatic generation of thin film process flows. II. Recipe generation, flow evaluation, and system framework , 1999 .

[18]  George M. Koppelman,et al.  OYSTER, a three-dimensional structural simulator for microelectromechanical design , 1989 .

[19]  R.W. Dutton,et al.  VLSI Process modeling—SUPREM III , 1983, IEEE Transactions on Electron Devices.

[20]  Siegfried Selberherr,et al.  Algorithms and models for cellular based topography simulation , 1995, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[21]  Alvy Ray Smith,et al.  Tint fill , 1979, SIGGRAPH.

[22]  Henry Lieberman How to color in a coloring book , 1978, SIGGRAPH '78.

[23]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .