Recent progress in research on polymer photonics is reviewed in this paper, including new concepts of polymer-based photonic materials, components and devices. Novel polymer photonic materials developed in our photonic research group, polysiloxanes (named as PSQ-Ls), are reported, including two kinds of PSQ-Ls, named as PSQ-LL and PSQ-LH. These polymer photonic materials are of a liquid and can be cured by UV light irradiation or by heat. The characterization of the optical films and waveguides based on the novel polymer materials, including refractive index, birefringence, optical loss and thermal stability, is given in detail. By blending PSQ-LL and PSQ-LH, the refractive indexes can be tuned linearly from 1.4482 to 1.5212 at 1310nm and from 1.4478 to 1.5198 at 1550nm. The birefringence is below 0.0005 with the variation of PSQ-LL content. These materials exhibit low optical losses of 0.31dB/cm at a wavelength of 1310nm and 0.70dB/cm at 1550nm, and high thermal stability with 1% decomposition temperatures of 297°C (in air) and 340°C (in N2) for PSQ-LH, and 313°C (in air) and 370°C (in N2) for PSQ-LL. Optical waveguide components such as micro-ring resonators and waveguide gratings based on PSQ-Ls are fabricated by photolithography-etching method and by UV imprint technology, respectively. The experimental measurements show that the polymer-based micro-ring resonators exhibit an excellent resonant filtering function. Potential applications of the polymer-based micro-ring resonators for optical communications and optical sensing are discussed.
[1]
L. Guo.
Recent progress in nanoimprint technology and its applications
,
2004
.
[2]
Olivier Soppera,et al.
Low-Loss Photopatternable Hybrid Sol–Gel Materials
,
2005
.
[3]
Louay A. Eldada,et al.
Hybrid organic-inorganic optoelectronic subsystems on a chip
,
2005,
SPIE OPTO.
[4]
Louay A. Eldada.
Organics in optoelectronics: advances and roadmap
,
2006,
SPIE OPTO.
[5]
Hella-Christin Scheer.
Nanoimprint lithography techniques: an introduction
,
2006,
European Mask and Lithography Conference.
[6]
Yuan Song,et al.
A Study on Liquid Hybrid Material for Waveguides—Synthesis and Property of PSQ‐Ls for Waveguides
,
2008
.
[7]
Louay A. Eldada,et al.
Hybrid-integrated optical isolators and circulators
,
2002,
SPIE OPTO.
[8]
Larry R. Dalton,et al.
Polymer-based optical waveguides: Materials, processing, and devices
,
2002
.