Strength and directionality of surface Ruderman–Kittel–Kasuya–Yosida interaction mapped on the atomic scale

The Ruderman–Kittel–Kasuya–Yosida interaction indirectly couples the moments of magnetic atoms through conduction electrons. Using a spin-polarized scanning tunnelling microscope, the direction and strength of this interaction between pairs and triplets of isolated atoms on a surface has been imaged directly.

[1]  H. J. Zeiger,et al.  Generalization of the Ruderman-Kittel-Kasuya-Yosida Interaction for Nonspherical Fermi Surfaces , 1966 .

[2]  K. Kern,et al.  Giant Magnetic Anisotropy of Single Cobalt Atoms and Nanoparticles , 2003, Science.

[3]  B. Ujfalussy,et al.  Ab-initio investigation of RKKY interactions on metallic surfaces , 2008 .

[4]  Etienne,et al.  Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. , 1988, Physical review letters.

[5]  Jens Wiebe,et al.  Revealing Magnetic Interactions from Single-Atom Magnetization Curves , 2008, Science.

[6]  Parkin,et al.  Oscillations in exchange coupling and magnetoresistance in metallic superlattice structures: Co/Ru, Co/Cr, and Fe/Cr. , 1990, Physical review letters.

[7]  Binasch,et al.  Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. , 1989, Physical review. B, Condensed matter.

[8]  S. Heinze,et al.  Chiral magnetic order at surfaces driven by inversion asymmetry , 2007, Nature.

[9]  Rudolf Zeller,et al.  Conceptual improvements of the KKR method , 2002 .

[10]  T. Kasuya,et al.  A Theory of Metallic Ferro- and Antiferromagnetism on Zener's Model , 1956 .

[11]  S. Blügel,et al.  Seeing the Fermi Surface in Real Space by Nanoscale Electron Focusing , 2009, Science.

[12]  M. Flatté,et al.  Atom-by-atom substitution of Mn in GaAs and visualization of their hole-mediated interactions , 2006, Nature.

[13]  S. Heinze,et al.  Unoccupied surface state on Pt(111) revealed by scanning tunneling spectroscopy , 2005 .

[14]  J. Staunton,et al.  Lanthanide contraction and magnetism in the heavy rare earth elements , 2007, Nature.

[15]  M. Persson,et al.  Spin splitting of s and p states in single atoms and magnetic coupling in dimers on a surface. , 2004, Physical review letters.

[16]  Parkin,et al.  Spin engineering: Direct determination of the Ruderman-Kittel-Kasuya-Yosida far-field range function in ruthenium. , 1991, Physical review. B, Condensed matter.

[17]  C. Kittel,et al.  INDIRECT EXCHANGE COUPLING OF NUCLEAR MAGNETIC MOMENTS BY CONDUCTION ELECTRONS , 1954 .

[18]  Hong,et al.  Observation of a magnetic antiphase domain structure with long-range order in a synthetic Gd-Y superlattice. , 1986, Physical review letters.

[19]  Jens Wiebe,et al.  A 300 mK ultra-high vacuum scanning tunneling microscope for spin-resolved spectroscopy at high energy resolution , 2004 .

[20]  Supriyo Bandyopadhyay,et al.  Supercomputing with spin-polarized single electrons in a quantum coupled architecture , 1994 .

[21]  C. Chappert,et al.  Ruderman-Kittel theory of oscillatory interlayer exchange coupling. , 1992, Physical review. B, Condensed matter.

[22]  Alex C. Hewson,et al.  The Kondo Problem to Heavy Fermions , 1993 .

[23]  K. Kern,et al.  Exchange interaction between single magnetic adatoms. , 2006, Physical review letters.

[24]  Schreiber,et al.  Layered magnetic structures: Evidence for antiferromagnetic coupling of Fe layers across Cr interlayers. , 1986, Physical review letters.

[25]  Cyrus F. Hirjibehedin,et al.  Spin Coupling in Engineered Atomic Structures , 2006, Science.

[26]  K. Yosida,et al.  Magnetic Properties of Cu-Mn Alloys , 1957 .

[27]  H. Ohno,et al.  Zener model description of ferromagnetism in zinc-blende magnetic semiconductors , 2000, Science.