On Maximal Codes in Polynominal Metric Spaces

We study the possibilities for attaining the best known universal linear programming bounds on the cardinality of codes in polynomial metric spaces (finite or infinite). We show that in many cases these bounds cannot be attained. Applications in different antipodal polynomial metric spaces are considered with special emphasis on the Euclidean sphere and the binary Hamming space.

[1]  Hsien-Chtjng Wang,et al.  TWO-POINT HOMOGENEOUS SPACES , 1952 .

[2]  E. Bannai,et al.  Algebraic Combinatorics I: Association Schemes , 1984 .

[3]  J. Seidel,et al.  Spherical codes and designs , 1977 .

[4]  V. Levenshtein Designs as maximum codes in polynomial metric spaces , 1992 .

[5]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[6]  N. J. A. Sloane,et al.  Sphere Packings, Lattices and Groups , 1987, Grundlehren der mathematischen Wissenschaften.

[7]  Noga Alon,et al.  Simple Construction of Almost k-wise Independent Random Variables , 1992, Random Struct. Algorithms.

[8]  Simon Litsyn,et al.  On Integral Zeros of Krawtchouk Polynomials , 1996, J. Comb. Theory, Ser. A.

[9]  R. M. Damerell,et al.  Tight Spherical Disigns, II , 1980 .

[10]  J. H. Lint A survey of perfect codes , 1975 .

[11]  Vladimir I. Levenshtein,et al.  Krawtchouk polynomials and universal bounds for codes and designs in Hamming spaces , 1995, IEEE Trans. Inf. Theory.

[12]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[13]  F. MacWilliams,et al.  The Theory of Error-Correcting Codes , 1977 .

[14]  Charles F. Dunkl,et al.  Discrete quadrature and bounds on $t$-designs. , 1979 .

[15]  Eiichi Bannai,et al.  Tight spherical designs, I , 1979 .

[16]  Philippe Delsarte,et al.  Four Fundamental Parameters of a Code and Their Combinatorial Significance , 1973, Inf. Control..

[17]  Vladimir I. Levenshtein,et al.  On Upper Bounds for Code Distance and Covering Radius of Designs in Polynomial Metric Spaces , 1995, J. Comb. Theory, Ser. A.

[18]  Ryuzaburo Noda On Orthogonal Arrays of Strength 4 Achieving Rao's Bound , 1979 .

[19]  Paul M. Terwilliger A characterization of P- and Q-polynomial association schemes , 1987, J. Comb. Theory, Ser. A.

[20]  Peter Boyvalenkov Computing distance distributions of spherical designs , 1995 .