Computation of Ground States of the Gross-Pitaevskii Functional via Riemannian Optimization
暂无分享,去创建一个
[1] Marco Caliari,et al. GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations , 2013, Comput. Phys. Commun..
[2] Steven Thomas Smith,et al. Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.
[3] Stephen J. Wright,et al. Numerical Optimization , 2018, Fundamental Statistical Inference.
[4] Eric Cancès,et al. Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..
[5] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[6] Ionut Danaila,et al. A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..
[7] Robert E. Mahony,et al. Optimization Algorithms on Matrix Manifolds , 2007 .
[8] Weizhu Bao,et al. A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates , 2015, Journal of Scientific Computing.
[9] Benedikt Wirth,et al. Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..
[10] P. Kazemi,et al. Tackling the Gross-Pitaevskii energy functional with the Sobolev gradient - Analytical and numerical results , 2009, 0906.3206.
[11] B. Merlet,et al. Convergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds , 2013, Differential and Integral Equations.
[12] Yannick Seurin,et al. Fast rotation of a Bose-Einstein condensate. , 2004, Physical review letters.
[13] Ionut Danaila. Three-dimensional vortex structure of a fast rotating Bose-Einstein condensate with harmonic-plus-quartic confinement , 2005 .
[14] Xavier Antoine,et al. Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods , 2016, J. Comput. Phys..
[15] W. Ketterle,et al. Bose-Einstein condensation , 1997 .
[16] I. Coddington,et al. Experimental studies of equilibrium vortex properties in a Bose-condensed gas (11 pages) , 2004 .
[17] G. Burton. Sobolev Spaces , 2013 .
[18] W. Bao,et al. MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .
[19] F. Alouges. A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .
[20] Jie Shen,et al. A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates , 2008, J. Comput. Phys..
[21] Ronald M. Caplan,et al. NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes , 2012, Comput. Phys. Commun..
[22] A. Aftalion. Vortices in Bose-Einstein Condensates , 2006 .
[23] W. Bao,et al. Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.
[24] Qiang Du,et al. Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..
[25] Masahito Ueda,et al. Giant hole and circular superflow in a fast rotating Bose-Einstein condensate , 2002 .
[26] Qiang Du,et al. Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime , 2001 .
[27] Sandro Stringari,et al. Bose-Einstein condensation and superfluidity , 2016 .
[28] S. Stringari. Phase diagram of quantized vortices in a trapped Bose-Einstein condensed gas , 1999 .
[29] Ulrich Hohenester,et al. OCTBEC - A Matlab toolbox for optimal quantum control of Bose-Einstein condensates , 2013, Comput. Phys. Commun..
[30] D. Sheehy,et al. Vortices in spatially inhomogeneous superfluids , 2004, cond-mat/0406205.
[31] Max Gunzburger,et al. Perspectives in flow control and optimization , 1987 .
[32] Xavier Antoine,et al. Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates , 2014, J. Comput. Phys..
[33] Rong Zeng,et al. Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates , 2009, Comput. Phys. Commun..
[34] Lorenz T. Biegler,et al. On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..
[35] W. Bao. Ground states and dynamics of rotating Bose-Einstein condensates , 2007 .
[36] Ionut Danaila,et al. Giant vortices in combined harmonic and quartic traps (6 pages) , 2004 .
[37] D. Luenberger. Optimization by Vector Space Methods , 1968 .
[38] Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic radial potentials , 2001, cond-mat/0109418.
[39] Elliott H. Lieb,et al. Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases , 2006 .
[40] P. E. Farrell,et al. Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation , 2016, Commun. Nonlinear Sci. Numer. Simul..
[41] Christophe Besse,et al. Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations , 2017, Comput. Phys. Commun..
[42] István Faragó,et al. Numerical solution of nonlinear elliptic problems via preconditioning operators : theory and applications , 2002 .
[43] Bamdev Mishra,et al. Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..
[44] Ionut Danaila,et al. A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates , 2010, J. Comput. Phys..
[45] William H. Press,et al. Numerical Recipes: The Art of Scientific Computing , 1987 .
[46] Ionut Danaila,et al. Three-dimensional vortex configurations in a rotating Bose Einstein condensate , 2003 .
[47] Morgan Pierre,et al. NEWTON AND CONJUGATE GRADIENT FOR HARMONIC MAPS FROM THE DISC INTO THE SPHERE , 2004 .
[48] M. Tsubota,et al. Quantized vortices in superfluid helium and atomic Bose-Einstein condensates , 2006, 1004.5458.
[49] Weizhu Bao,et al. Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .
[50] Cédric Villani,et al. Gradient flows I , 2009 .
[51] Patrick J. Roache,et al. Verification and Validation in Computational Science and Engineering , 1998 .
[52] J. Nocedal,et al. Adaptive Barrier Strategies for Nonlinear Interior Methods , 2022 .
[53] John William Neuberger,et al. Sobolev gradients and differential equations , 1997 .
[54] Víctor M. Pérez-García,et al. Optimizing Schrödinger Functionals Using Sobolev Gradients: Applications to Quantum Mechanics and Nonlinear Optics , 2001, SIAM J. Sci. Comput..
[55] Christophe Besse,et al. Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .
[56] Frédéric Hecht,et al. New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations , 1995 .
[57] S.-L. Chang,et al. Computing wave functions of nonlinear Schrödinger equations: A time-independent approach , 2007, J. Comput. Phys..
[58] Ionut Danaila,et al. A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation , 2016, Comput. Phys. Commun..