Computation of Ground States of the Gross-Pitaevskii Functional via Riemannian Optimization

In this paper we combine concepts from Riemannian optimization [P.-A. Absil, R. Mahony, and R. Sepulchre, Optimization Algorithms on Matrix Manifolds, Princeton University Press, 2008] and the theory of Sobolev gradients [J. W. Neuberger, Sobolev Gradients and Differential Equation, 2nd ed., Springer, 2010] to derive a new conjugate gradient method for direct minimization of the Gross--Pitaevskii energy functional with rotation. The conservation of the number of particles in the system constrains the minimizers to lie on a manifold corresponding to the unit $L^2$ norm. The idea developed here is to transform the original constrained optimization problem into an unconstrained problem on this (spherical) Riemannian manifold, so that fast minimization algorithms can be applied as alternatives to more standard constrained formulations. First, we obtain Sobolev gradients using an equivalent definition of an $H^1$ inner product which takes into account rotation. Then, the Riemannian gradient (RG) steepest desce...

[1]  Marco Caliari,et al.  GSGPEs: A MATLAB code for computing the ground state of systems of Gross-Pitaevskii equations , 2013, Comput. Phys. Commun..

[2]  Steven Thomas Smith,et al.  Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.

[3]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[4]  Eric Cancès,et al.  Ground state of the time-independent Gross-Pitaevskii equation , 2007, Comput. Phys. Commun..

[5]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[6]  Ionut Danaila,et al.  A New Sobolev Gradient Method for Direct Minimization of the Gross--Pitaevskii Energy with Rotation , 2009, SIAM J. Sci. Comput..

[7]  Robert E. Mahony,et al.  Optimization Algorithms on Matrix Manifolds , 2007 .

[8]  Weizhu Bao,et al.  A Regularized Newton Method for Computing Ground States of Bose–Einstein Condensates , 2015, Journal of Scientific Computing.

[9]  Benedikt Wirth,et al.  Optimization Methods on Riemannian Manifolds and Their Application to Shape Space , 2012, SIAM J. Optim..

[10]  P. Kazemi,et al.  Tackling the Gross-Pitaevskii energy functional with the Sobolev gradient - Analytical and numerical results , 2009, 0906.3206.

[11]  B. Merlet,et al.  Convergence to equilibrium for discretizations of gradient-like flows on Riemannian manifolds , 2013, Differential and Integral Equations.

[12]  Yannick Seurin,et al.  Fast rotation of a Bose-Einstein condensate. , 2004, Physical review letters.

[13]  Ionut Danaila Three-dimensional vortex structure of a fast rotating Bose-Einstein condensate with harmonic-plus-quartic confinement , 2005 .

[14]  Xavier Antoine,et al.  Efficient spectral computation of the stationary states of rotating Bose-Einstein condensates by preconditioned nonlinear conjugate gradient methods , 2016, J. Comput. Phys..

[15]  W. Ketterle,et al.  Bose-Einstein condensation , 1997 .

[16]  I. Coddington,et al.  Experimental studies of equilibrium vortex properties in a Bose-condensed gas (11 pages) , 2004 .

[17]  G. Burton Sobolev Spaces , 2013 .

[18]  W. Bao,et al.  MATHEMATICAL THEORY AND NUMERICAL METHODS FOR , 2012 .

[19]  F. Alouges A New Algorithm For Computing Liquid Crystal Stable Configurations: The Harmonic Mapping Case , 1997 .

[20]  Jie Shen,et al.  A generalized-Laguerre-Hermite pseudospectral method for computing symmetric and central vortex states in Bose-Einstein condensates , 2008, J. Comput. Phys..

[21]  Ronald M. Caplan,et al.  NLSEmagic: Nonlinear Schrödinger equation multi-dimensional Matlab-based GPU-accelerated integrators using compact high-order schemes , 2012, Comput. Phys. Commun..

[22]  A. Aftalion Vortices in Bose-Einstein Condensates , 2006 .

[23]  W. Bao,et al.  Mathematical Models and Numerical Methods for Bose-Einstein Condensation , 2012, 1212.5341.

[24]  Qiang Du,et al.  Computing the Ground State Solution of Bose-Einstein Condensates by a Normalized Gradient Flow , 2003, SIAM J. Sci. Comput..

[25]  Masahito Ueda,et al.  Giant hole and circular superflow in a fast rotating Bose-Einstein condensate , 2002 .

[26]  Qiang Du,et al.  Vortices in a rotating Bose-Einstein condensate: Critical angular velocities and energy diagrams in the Thomas-Fermi regime , 2001 .

[27]  Sandro Stringari,et al.  Bose-Einstein condensation and superfluidity , 2016 .

[28]  S. Stringari Phase diagram of quantized vortices in a trapped Bose-Einstein condensed gas , 1999 .

[29]  Ulrich Hohenester,et al.  OCTBEC - A Matlab toolbox for optimal quantum control of Bose-Einstein condensates , 2013, Comput. Phys. Commun..

[30]  D. Sheehy,et al.  Vortices in spatially inhomogeneous superfluids , 2004, cond-mat/0406205.

[31]  Max Gunzburger,et al.  Perspectives in flow control and optimization , 1987 .

[32]  Xavier Antoine,et al.  Robust and efficient preconditioned Krylov spectral solvers for computing the ground states of fast rotating and strongly interacting Bose-Einstein condensates , 2014, J. Comput. Phys..

[33]  Rong Zeng,et al.  Efficiently computing vortex lattices in rapid rotating Bose-Einstein condensates , 2009, Comput. Phys. Commun..

[34]  Lorenz T. Biegler,et al.  On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming , 2006, Math. Program..

[35]  W. Bao Ground states and dynamics of rotating Bose-Einstein condensates , 2007 .

[36]  Ionut Danaila,et al.  Giant vortices in combined harmonic and quartic traps (6 pages) , 2004 .

[37]  D. Luenberger Optimization by Vector Space Methods , 1968 .

[38]  Rotating vortex lattice in a Bose-Einstein condensate trapped in combined quadratic and quartic radial potentials , 2001, cond-mat/0109418.

[39]  Elliott H. Lieb,et al.  Derivation of the Gross-Pitaevskii Equation for Rotating Bose Gases , 2006 .

[40]  P. E. Farrell,et al.  Computing stationary solutions of the two-dimensional Gross-Pitaevskii equation with deflated continuation , 2016, Commun. Nonlinear Sci. Numer. Simul..

[41]  Christophe Besse,et al.  Acceleration of the imaginary time method for spectrally computing the stationary states of Gross-Pitaevskii equations , 2017, Comput. Phys. Commun..

[42]  István Faragó,et al.  Numerical solution of nonlinear elliptic problems via preconditioning operators : theory and applications , 2002 .

[43]  Bamdev Mishra,et al.  Manopt, a matlab toolbox for optimization on manifolds , 2013, J. Mach. Learn. Res..

[44]  Ionut Danaila,et al.  A finite element method with mesh adaptivity for computing vortex states in fast-rotating Bose-Einstein condensates , 2010, J. Comput. Phys..

[45]  William H. Press,et al.  Numerical Recipes: The Art of Scientific Computing , 1987 .

[46]  Ionut Danaila,et al.  Three-dimensional vortex configurations in a rotating Bose Einstein condensate , 2003 .

[47]  Morgan Pierre,et al.  NEWTON AND CONJUGATE GRADIENT FOR HARMONIC MAPS FROM THE DISC INTO THE SPHERE , 2004 .

[48]  M. Tsubota,et al.  Quantized vortices in superfluid helium and atomic Bose-Einstein condensates , 2006, 1004.5458.

[49]  Weizhu Bao,et al.  Ground-state solution of Bose--Einstein condensate by directly minimizing the energy functional , 2003 .

[50]  Cédric Villani,et al.  Gradient flows I , 2009 .

[51]  Patrick J. Roache,et al.  Verification and Validation in Computational Science and Engineering , 1998 .

[52]  J. Nocedal,et al.  Adaptive Barrier Strategies for Nonlinear Interior Methods , 2022 .

[53]  John William Neuberger,et al.  Sobolev gradients and differential equations , 1997 .

[54]  Víctor M. Pérez-García,et al.  Optimizing Schrödinger Functionals Using Sobolev Gradients: Applications to Quantum Mechanics and Nonlinear Optics , 2001, SIAM J. Sci. Comput..

[55]  Christophe Besse,et al.  Communi-cations Computational methods for the dynamics of the nonlinear Schr̈odinger / Gross-Pitaevskii equations , 2013 .

[56]  Frédéric Hecht,et al.  New Progress in Anisotropic Grid Adaptation for Inviscid and Viscous Flows Simulations , 1995 .

[57]  S.-L. Chang,et al.  Computing wave functions of nonlinear Schrödinger equations: A time-independent approach , 2007, J. Comput. Phys..

[58]  Ionut Danaila,et al.  A finite-element toolbox for the stationary Gross-Pitaevskii equation with rotation , 2016, Comput. Phys. Commun..