The 1[ratio ]2 mode interaction in exactly counter-rotating von Kármán swirling flow

The flow produced in an enclosed cylinder of height-to-radius ratio of two by the counter-rotation of the top and bottom disks is numerically investigated. When the Reynolds number based on cylinder radius and disk rotation is increased, the axisymmetric basic state loses stability and different complex flows appear successively: steady states with an azimuthal wavenumber of 1; travelling waves; near-heteroclinic cycles; and steady states with an azimuthal wavenumber of 2. This scenario is understood in a dynamical system context as being due to a nearly codimension-two bifurcation in the presence of $O(2)$ symmetry. A bifurcation diagram is determined, together with the most dangerous eigenvalues as functions of the Reynolds number. Two distinct types of near-heteroclinic cycles are observed, with either two or four bursts per cycle. The physical mechanism for the primary instability could be the Kelvin–Helmholtz instability of the equatorial azimuthal shear layer of the basic state.

[1]  Patrick Bontoux,et al.  Annular and spiral patterns in flows between rotating and stationary discs , 2001, Journal of Fluid Mechanics.

[2]  Juan Lopez,et al.  Axisymmetric vortex breakdown Part 1. Confined swirling flow , 1990, Journal of Fluid Mechanics.

[3]  Fotis Sotiropoulos,et al.  Transition from bubble-type vortex breakdown to columnar vortex in a confined swirling flow , 1998 .

[4]  Mark R. Proctor,et al.  The interaction of two spatially resonant patterns in thermal convection. Part 1. Exact 1:2 resonance , 1988, Journal of Fluid Mechanics.

[5]  Patrick Bontoux,et al.  A pseudo-spectral solution of vorticity-stream function equations using the influence matrix technique , 1986 .

[6]  Eberhard Bodenschatz,et al.  Using cavitation to measure statistics of low-pressure events in large-Reynolds-number turbulence , 2000 .

[7]  John Guckenheimer,et al.  Heteroclinic cycles and modulated traveling waves in systems with O(2) symmetry , 1988 .

[8]  Fotis Sotiropoulos,et al.  The three-dimensional structure of confined swirling flows with vortex breakdown , 2001, Journal of Fluid Mechanics.

[9]  D. Armbruster 0(2)-symmetric bifurcation theory for convection rolls , 1987 .

[10]  Nadine Aubry,et al.  The dynamics of coherent structures in the wall region of a turbulent boundary layer , 1988, Journal of Fluid Mechanics.

[11]  Edgar Knobloch,et al.  Robust heteroclinic Cycles in Two-Dimensional Rayleigh-bÉnard convection without Boussinesq Symmetry , 2002, Int. J. Bifurc. Chaos.

[12]  L. Schouveiler,et al.  Instabilities of the flow between a rotating and a stationary disk , 2001, Journal of Fluid Mechanics.

[13]  E. Knobloch,et al.  Symmetry and Symmetry-Breaking Bifurcations in Fluid Dynamics , 1991 .

[14]  Philippe Gondret,et al.  Axisymmetric propagating vortices in the flow between a stationary and a rotating disk enclosed by a cylinder , 1999, Journal of Fluid Mechanics.

[15]  M. Shashkov,et al.  Natural discretizations for the divergence, gradient, and curl on logically rectangular grids☆ , 1997 .

[16]  J. Lopez Flow between a stationary and a rotating disk shrouded by a co‐rotating cylinder , 1996 .

[17]  R. Henderson,et al.  Secondary instability in the wake of a circular cylinder , 1996 .

[18]  Gerhard Dangelmayr,et al.  Steady-state mode interactions in the presence of 0(2)-symmetry , 1986 .

[19]  Marianela Lentini,et al.  The Von Karman Swirling Flows , 1980 .

[20]  J. Pinton,et al.  Power Fluctuations in Turbulent Swirling Flows , 1996 .

[21]  Oscillatory modes in an enclosed swirling flow , 2001, Journal of Fluid Mechanics.

[22]  Andreas Spohn,et al.  Experiments on vortex breakdown in a confined flow generated by a rotating disc , 1998, Journal of Fluid Mechanics.

[23]  Steady states and oscillatory instability of swirling flow in a cylinder with rotating top and bottom , 1996 .

[24]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .

[25]  Melbourne,et al.  Asymptotic stability of heteroclinic cycles in systems with symmetry , 1995, Ergodic Theory and Dynamical Systems.

[26]  Y. Saad,et al.  GMRES: a generalized minimal residual algorithm for solving nonsymmetric linear systems , 1986 .

[27]  J. Lopez Characteristics of endwall and sidewall boundary layers in a rotating cylinder with a differentially rotating endwall , 1998, Journal of Fluid Mechanics.

[28]  E. Serre,et al.  Axisymmetric and three-dimensional instabilities in an Ekman boundary layer flow , 2001 .

[29]  J. Pinton,et al.  ADVECTION OF A MAGNETIC FIELD BY A TURBULENT SWIRLING FLOW , 1998 .

[30]  G. Gauthier,et al.  Instabilities in the flow between co- and counter-rotating disks , 2002, Journal of Fluid Mechanics.

[31]  Lionel Schouveiler,et al.  Stability of a traveling roll system in a rotating disk flow , 1998 .

[32]  M. P. Escudier,et al.  Observations of the flow produced in a cylindrical container by a rotating endwall , 1984 .

[33]  L. Tuckerman,et al.  Asymmetry and Hopf bifurcation in spherical Couette flow , 1995 .

[34]  T. Kármán Über laminare und turbulente Reibung , 1921 .

[35]  G. Batchelor NOTE ON A CLASS OF SOLUTIONS OF THE NAVIER-STOKES EQUATIONS REPRESENTING STEADY ROTATIONALLY-SYMMETRIC FLOW , 1951 .

[36]  Bifurcation problems with O(2)⊕Z2 symmetry and the buckling of a cylindrical shell , 1986 .

[37]  Philip Holmes,et al.  Heteroclinic cycles and modulated travelling waves in a system with D 4 symmetry , 1992 .

[38]  I. Kevrekidis,et al.  Back in the saddle again: a computer assisted study of the Kuramoto-Sivashinsky equation , 1990 .

[39]  Dale B. Haidvogel,et al.  The Accurate Solution of Poisson's Equation by Expansion in Chebyshev Polynomials , 1979 .

[40]  A. A. Szewczyk,et al.  Stability of a Shear Layer between Parallel Streams , 1963 .

[41]  F. M A R Q U E S,et al.  Mode interactions in an enclosed swirling flow : a double Hopf bifurcation between azimuthal wavenumbers 0 and 2 , 2001 .

[42]  J. N. Sørensen,et al.  Simulation numérique de l'écoulement périodique axisymétrique dans une cavité cylindrique , 1989 .

[43]  J. Lopezb,et al.  Symmetry breaking of the flow in a cylinder driven by a rotating end wall , 2000 .

[44]  O. Daube,et al.  Sur la nature de la première bifurcation des écoulements interdisques , 1998 .

[45]  J. E. Hart,et al.  Instability and mode interactions in a differentially driven rotating cylinder , 2001, Journal of Fluid Mechanics.

[46]  Edgar Knobloch,et al.  New type of complex dynamics in the 1:2 spatial resonance , 2001 .

[47]  J L S T E V E N S,et al.  Oscillatory flow states in an enclosed cylinder with a rotating endwall , 1998 .

[48]  F. Marques,et al.  Precessing vortex breakdown mode in an enclosed cylinder flow , 2001 .

[49]  H. Blackburn,et al.  Modulated rotating waves in an enclosed swirling flow , 2002, Journal of Fluid Mechanics.

[50]  M. Golubitsky,et al.  Singularities and groups in bifurcation theory , 1985 .

[51]  H. Lugt,et al.  Axisymmetric vortex breakdown with and without temperature effects in a container with a rotating lid , 1987, Journal of Fluid Mechanics.

[52]  Yves Couder,et al.  CHARACTERIZATION OF THE LOW-PRESSURE FILAMENTS IN A THREE-DIMENSIONAL TURBULENT SHEAR FLOW , 1995 .

[53]  Douady,et al.  Direct observation of the intermittency of intense vorticity filaments in turbulence. , 1991, Physical review letters.

[54]  Pinhas Z. Bar-Yoseph,et al.  Three-dimensional instability of axisymmetric flow in a rotating lid–cylinder enclosure , 2001, Journal of Fluid Mechanics.