Continual Measurements in Quantum Mechanics and Quantum Stochastic Calculus

1 Introduction 31.1 Three approaches to continual measurements 31.2 Quantum stochastic calculus and quantum optics 31.3 Some notations: operator spaces 42 Unitary evolution and states 52.1 Quantum stochastic calculus 5The Fock space 5The Weyl operators and the Bose fields 6Quantum stochastic integrals 92.2 The unitary system–field evolution 13The Hudson–Parthasarathy equation 13The Hamiltonian evolution 152.3 The system–field state 192.4 The reduced dynamics 21System observables in the Heisenberg picture 21The master equation 222.5 Physical basis of the use of QSC 23The quasi–monochromatic paraxial approximation of theelectromagnetic field 23Approximations in the system–field interaction 243 Continual measurements 253.1 Indirect measurements on S

[1]  A. Holevo Statistical structure of quantum theory , 2001 .

[2]  B. Muzykantskii,et al.  ON QUANTUM NOISE , 1995 .

[3]  Walls,et al.  Quantum theory of a squeezed-pump laser. , 1988, Physical review. A, General physics.

[4]  B. M. Fulk MATH , 1992 .

[5]  L. Mandel,et al.  Resonance fluorescence with excitation of finite bandwidth , 1977 .

[6]  Robin L. Hudson,et al.  Quantum Ito's formula and stochastic evolutions , 1984 .

[7]  M. B. Menskii,et al.  Continuous quantum measurements and path integrals , 1993 .

[8]  Alberto Barchielli Direct and heterodyne detection and other applications of quantum stochastic calculus to quantum optics , 1990 .

[9]  J. T Lewis,et al.  Quantum stochastic processes I , 1981 .

[10]  M. Hercher,et al.  Observation of the resonant Stark effect at optical frequencies , 1974 .

[11]  Reid,et al.  Quantum analysis of intensity fluctuations in the nondegenerate parametric oscillator. , 1988, Physical review. A, General physics.

[12]  Alberto Barchielli,et al.  Statistics of continuous trajectories in quantum mechanics: Operation-valued stochastic processes , 1983 .

[13]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part II: Photoemissive detection and structured receiver performance , 1979, IEEE Trans. Inf. Theory.

[14]  A. Holevo A noncommutative generalization of conditionally positive definite functions , 1988 .

[15]  A. Frigerio Covariant Markov Dilations of Quantum Dynamical Semigroups , 1985 .

[16]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part I: Quantum-state propagation and quantum-noise , 1978, IEEE Trans. Inf. Theory.

[18]  Alberto Barchielli,et al.  A model for the macroscopic description and continual observations in quantum mechanics , 1982 .

[19]  Klaus Mølmer,et al.  A Monte Carlo wave function method in quantum optics , 1993, Optical Society of America Annual Meeting.

[20]  Melvin Lax,et al.  Quantum Noise. IV. Quantum Theory of Noise Sources , 1966 .

[21]  A. Chebotarev Lecture on Quantum Probability , 2000 .

[22]  M. Ruzzier,et al.  Relativistic transformation properties of quantum stochastic calculus , 1989 .

[23]  Walls,et al.  Quantum jumps in atomic systems. , 1988, Physical review. A, General physics.

[24]  Anita Dabrowska Counting Photons in the Λ-Experiment , 2002, Open Syst. Inf. Dyn..

[25]  V. Chan,et al.  Noise in homodyne and heterodyne detection. , 1983, Optics letters.

[26]  Luigi Accardi,et al.  On the quantum Feynman-Kac formula , 1978 .

[27]  P. Kelley,et al.  Theory of Electromagnetic Field Measurement and Photoelectron Counting , 1964 .

[28]  Frederick Y. Wu,et al.  Measurement of the spectrum of resonance fluorescence from a two-level atom in an intense monochromatic field , 1977 .

[29]  Input and output channels in quantum systems and quantum stochastic differential equations , 1988 .

[30]  B. R. Mollow Power spectrum of light scattered by two-level systems , 1969 .

[31]  M. Sentís Quantum theory of open systems , 2002 .

[32]  Luigi Accardi,et al.  Quantum Stochastic Processes , 1982 .

[33]  Collett,et al.  Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. , 1985, Physical review. A, General physics.

[35]  Constructing the davies process of resonance fluorescence with quantum stochastic calculus , 2002, quant-ph/0207164.

[36]  Sandberg,et al.  Shelved optical electron amplifier: Observation of quantum jumps. , 1986, Physical review letters.

[37]  A. S. Holevo TIME-ORDERED EXPONENTIALS IN QUANTUM STOCHASTIC CALCULUS , 1992 .

[38]  Kennedy,et al.  Squeezed quantum fluctuations and macroscopic quantum coherence. , 1988, Physical review. A, General physics.

[39]  Viacheslav P. Belavkin,et al.  Nondemolition measurements, nonlinear filtering and dynamic programming of quantum stochastic processes , 1989 .

[40]  Limit theorems for repeated measurements and continuous measurement processes , 1989 .

[41]  L. Accardi,et al.  On the weak coupling limit problem , 1989 .

[42]  Alberto Barchielli,et al.  Quantum stochastic differential equations: an application to the electron shelving effect , 1987 .

[43]  Alberto Barchielli,et al.  Convolution semigroups in quantum probability and quantum stochastic calculus , 1989 .

[44]  Alberto Barchielli,et al.  Quantum stochastic calculus, operation valued stochastic processes, and continual measurements in quantum mechanics , 1985 .

[45]  J. Linnett,et al.  Quantum mechanics , 1975, Nature.

[46]  Quantum Probability and Applications II , 1985 .

[47]  V. P. Belavkin,et al.  Measurements continuous in time and a posteriori states in quantum mechanics , 1991 .

[48]  Alberto Barchielli,et al.  Measurement theory and stochastic differential equations in quantum mechanics. , 1986, Physical review. A, General physics.

[49]  Jeffrey H. Shapiro,et al.  Optical communication with two-photon coherent states-Part III: Quantum measurements realizable with photoemissive detectors , 1980, IEEE Trans. Inf. Theory.

[50]  Wineland,et al.  Observation of quantum jumps in a single atom. , 1986, Physical review letters.

[51]  Generalized stochastic processes and continual observations in quantum mechanics , 1983 .

[52]  A. Frigerio Construction of stationary quantum markov processes through quantum stochastic calculus , 1985 .

[53]  L. Diósi,et al.  Stochastic Evolution of Quantum States in Open Systems and in Measurement Processes: Proceedings of the Workshop , 1994 .

[54]  Walls,et al.  Squeezed-reservoir lasers. , 1988, Physical review. A, General physics.

[55]  K. Parthasarathy An Introduction to Quantum Stochastic Calculus , 1992 .

[56]  Gardiner,et al.  Inhibition of atomic phase decays by squeezed light: A direct effect of squeezing. , 1986, Physical review letters.

[57]  C. cohen-tannoudji,et al.  Single-Atom Laser Spectroscopy. Looking for Dark Periods in Fluorescence Light , 1986 .

[58]  L. Accardi,et al.  An invitation to the weak coupling and the low density limit , 1991 .

[59]  L. Accardi,et al.  Quantum Langevin equation in the weak coupling limit , 1990 .

[60]  Existence, positivity and contractivity for quantum stochastic flows with infinite dimensional noise , 2000 .

[61]  Blatt,et al.  Observation of quantum jumps. , 1986, Physical review letters.

[62]  H. Maassen Quantum Markov processes on Fock space described by integral kernels , 1985 .

[63]  J. Cresser,et al.  Resonance Fluorescence of Atoms in Strong Monochromatic Laser Fields , 1982 .

[64]  Milburn Quantum measurement theory of optical heterodyne detection. , 1987, Physical review. A, General physics.

[65]  Alexander Mikhailovich Chebotarev The quantum stochastic equation is unitarily equivalent to a symmetric boundary value problem for the Schrödinger equation , 1997 .

[66]  R. Schieder,et al.  Study of the frequency distribution of the fluorescent light induced by monochromatic radiation , 1976 .

[67]  Collett,et al.  Quantum limits to light amplifiers. , 1988, Physical review letters.

[68]  On the Quantum Theory of Direct Detection , 1997 .

[69]  Luc Bouten,et al.  Stochastic Schrödinger equations , 2003 .

[70]  Luc Bouten,et al.  Stochastic Schr¨ odinger equations , 2004 .

[71]  A. Chebotarev,et al.  Quantum stochastic processes arising from the strong resolvent limits of the Schrödinger evolution in Fock space , 1998 .