Stacking fault-associated polarized surface-emitted photoluminescence from zincblende InGaN/GaN quantum wells

Zincblende InGaN/GaN quantum wells offer a potential improvement to the efficiency of green light emission by removing the strong electric fields present in similar structures. However, a high density of stacking faults may have an impact on the recombination in these systems. In this work, scanning transmission electron microscopy and energy-dispersive x-ray measurements demonstrate that one-dimensional nanostructures form due to indium segregation adjacent to stacking faults. In photoluminescence experiments, these structures emit visible light, which is optically polarized up to 86% at 10 K and up to 75% at room temperature. The emission redshifts and broadens as the well width increases from 2 nm to 8 nm. Photoluminescence excitation measurements indicate that carriers are captured by these structures from the rest of the quantum wells and recombine to emit light polarized along the length of these nanostructures.

[1]  D. Wallis,et al.  Investigation of stacking faults in MOVPE-grown zincblende GaN by XRD and TEM , 2019, Journal of Applied Physics.

[2]  D. Wallis,et al.  Effect of stacking faults on the photoluminescence spectrum of zincblende GaN , 2018 .

[3]  D. Wallis,et al.  X-ray diffraction analysis of cubic zincblende III-nitrides , 2017 .

[4]  C. Humphreys,et al.  X‐ray reflectivity method for the characterization of InGaN/GaN quantum well interface , 2017 .

[5]  D. Wallis,et al.  Photoluminescence studies of cubic GaN epilayers , 2017 .

[6]  C. Humphreys,et al.  The nature of carrier localisation in polar and nonpolar InGaN/GaN quantum wells , 2016 .

[7]  Aldo Di Carlo,et al.  Efficiency Drop in Green InGaN/GaN Light Emitting Diodes: The Role of Random Alloy Fluctuations. , 2016, Physical review letters.

[8]  C. Humphreys,et al.  Effects of quantum well growth temperature on the recombination efficiency of InGaN/GaN multiple quantum wells that emit in the green and blue spectral regions , 2015 .

[9]  L. Kirste,et al.  Birefringence and refractive indices of wurtzite GaN in the transparency range , 2015 .

[10]  Mary Yamada,et al.  Solid-State Lighting R&D Plan - 2015 , 2015 .

[11]  J. Lindner,et al.  STEM‐CL investigations on the influence of stacking faults on the optical emission of cubic GaN epilayers and cubic GaN/AlN multi‐quantum wells , 2015 .

[12]  James S. Speck,et al.  Highly polarized photoluminescence and its dynamics in semipolar (202¯1¯) InGaN/GaN quantum well , 2014 .

[13]  J. Geng Three-dimensional display technologies. , 2013, Advances in optics and photonics.

[14]  Ferdinand Scholz,et al.  Wavelength‐dependent determination of the recombination rate coefficients in single‐quantum‐well GaInN/GaN light emitting diodes , 2013 .

[15]  Xiao-qian Fu,et al.  Electronic structure and optical properties of zinc-blende GaN , 2012 .

[16]  A. Hangleiter,et al.  Large optical polarization anisotropy due to anisotropic in-plane strain in m-plane GaInN quantum well structures grown on m-plane 6H-SiC , 2012 .

[17]  James S. Speck,et al.  Polarized spontaneous emission from blue-green m-plane GaN-based light emitting diodes , 2011 .

[18]  Park Seoung-Hwan,et al.  Optical Properties of Zinc-Blende InGaN/GaN Quantum Well Structures and Comparison with Experiment , 2010 .

[19]  Donat Josef As,et al.  Cubic group-III nitride-based nanostructures - basics and applications in optoelectronics , 2009, Microelectron. J..

[20]  Masashi Kubota,et al.  Temperature dependence of polarized photoluminescence from nonpolar m-plane InGaN multiple quantum wells for blue laser diodes , 2008 .

[21]  K. Volz,et al.  Quantitative description of disorder parameters in (GaIn)(NAs) quantum wells from the temperature-dependent photoluminescence spectroscopy , 2005 .

[22]  C. Humphreys,et al.  Optical and microstructural studies of InGaN∕GaN single-quantum-well structures , 2005 .

[23]  S. Kamiyama,et al.  Time resolved photoluminescence study of Si modulation doped GaN/Al0.07Ga0.93N multiple quantum wells , 2004 .

[24]  Jerry R. Meyer,et al.  Band parameters for nitrogen-containing semiconductors , 2003 .

[25]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[26]  G. Guillot,et al.  How to grow cubic GaN with low hexagonal phase content on (001) SiC by molecular beam epitaxy , 1998 .

[27]  Shigeru Nakagawa,et al.  Determination of piezoelectric fields in strained GaInN quantum wells using the quantum-confined Stark effect , 1998 .

[28]  A. F. Wright Basal-plane stacking faults and polymorphism in AlN, GaN, and InN , 1997 .

[29]  B. Šantić,et al.  Electrical and optical properties of oxygen doped GaN grown by MOCVD using N2O , 1997 .

[30]  K. Cheah,et al.  Linear polarization of photoluminescence in quantum wires , 1997 .

[31]  G. Bastard,et al.  Interband absorption in quantum wires. I. Zero-magnetic-field case. , 1992, Physical review. B, Condensed matter.

[32]  T. Smith,et al.  The C.I.E. colorimetric standards and their use , 1931 .