Plexus-specific retinal vascular anatomy and pathologies as seen by projection-resolved optical coherence tomographic angiography

Optical coherence tomographic angiography (OCTA) is a novel technology capable of imaging retinal vasculature three-dimensionally at capillary scale without the need to inject any extrinsic dye contrast. However, projection artifacts cause superficial retinal vascular patterns to be duplicated in deeper layers, thus interfering with the clean visualization of some retinal plexuses and vascular pathologies. Projection-resolved OCTA (PR-OCTA) uses post-processing algorithms to reduce projection artifacts. With PR-OCTA, it is now possible to resolve up to 4 distinct retinal vascular plexuses in the living human eye. The technology also allows us to detect and distinguish between various retinal and optic nerve diseases. For example, optic nerve diseases such as glaucoma primarily reduces the capillary density in the superficial vascular complex, which comprises the nerve fiber layer plexus and the ganglion cell layer plexus. Outer retinal diseases such as retinitis pigmentosa primarily reduce the capillary density in the deep vascular complex, which comprises the intermediate capillary plexus and the deep capillary plexus. Retinal vascular diseases such as diabetic retinopathy and vein occlusion affect all plexuses, but with different patterns of capillary loss and vascular malformations. PR-OCTA is also useful in distinguishing various types of choroidal neovascularization and monitoring their response to anti-angiogenic medications. In retinal angiomatous proliferation and macular telangiectasia type 2, PR-OCTA can trace the pathologic vascular extension into deeper layers as the disease progress through stages. Plexus-specific visualization and measurement of retinal vascular changes are improving our ability to diagnose, stage, monitor, and assess treatment response in a wide variety of optic nerve and retinal diseases. These applications will be further enhanced with the continuing improvement of the speed and resolution of the OCT platforms, as well as the development of software algorithms to reduce artifacts, improve image quality, and make quantitative measurements.

[1]  Mayss Al-Sheikh,et al.  Repeatability of automated vessel density measurements using optical coherence tomography angiography , 2016, British Journal of Ophthalmology.

[2]  Nathan D. Shemonski,et al.  Optical Coherence Tomography Angiography Macular and Peripapillary Vessel Perfusion Density in Healthy Subjects, Glaucoma Suspects, and Glaucoma Patients. , 2017, Investigative ophthalmology & visual science.

[3]  Ruikang K. Wang,et al.  Ultrahigh sensitive optical microangiography for in vivo imaging of microcirculations within human skin tissue beds. , 2010, Optics express.

[4]  David Huang,et al.  Foreword: 25 Years of Optical Coherence Tomography. , 2016, Investigative ophthalmology & visual science.

[5]  Simon S. Gao,et al.  Automated choroidal neovascularization detection algorithm for optical coherence tomography angiography. , 2015, Biomedical optics express.

[6]  David J. Wilson,et al.  Detailed Vascular Anatomy of the Human Retina by Projection-Resolved Optical Coherence Tomography Angiography , 2017, Scientific Reports.

[7]  David Huang,et al.  Choriocapillaris evaluation in choroideremia using optical coherence tomography angiography. , 2017, Biomedical optics express.

[8]  B. Blodi,et al.  Idiopathic juxtafoveolar retinal telangiectasis , 1993 .

[9]  S. Sadda,et al.  BIOMARKERS OF NEOVASCULAR ACTIVITY IN AGE-RELATED MACULAR DEGENERATION USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2017, Retina.

[10]  E. Souied,et al.  Treatment-Naïve Quiescent Choroidal Neovascularization in Geographic Atrophy Secondary to Nonexudative Age-Related Macular Degeneration. , 2017, American journal of ophthalmology.

[11]  T. Wong,et al.  Global prevalence of glaucoma and projections of glaucoma burden through 2040: a systematic review and meta-analysis. , 2014, Ophthalmology.

[12]  Ruikang K. Wang,et al.  User-guided segmentation for volumetric retinal optical coherence tomography images. , 2014, Journal of biomedical optics.

[13]  Changhuei Yang,et al.  Mobility and transverse flow visualization using phase variance contrast with spectral domain optical coherence tomography. , 2007, Optics express.

[14]  Dao-Yi Yu,et al.  Quantitative morphometry of perifoveal capillary networks in the human retina. , 2012, Investigative ophthalmology & visual science.

[15]  Ayman El-Baz,et al.  Automatic blood vessels segmentation based on different retinal maps from OCTA scans , 2017, Comput. Biol. Medicine.

[16]  Dao-Yi Yu,et al.  Quantitative confocal imaging of the retinal microvasculature in the human retina. , 2012, Investigative ophthalmology & visual science.

[17]  Robert J Zawadzki,et al.  Phase-variance optical coherence tomography: a technique for noninvasive angiography. , 2014, Ophthalmology.

[18]  Ian C. Han,et al.  Macular Vascular Abnormalities Identified by Optical Coherence Tomographic Angiography in Patients With Sickle Cell Disease. , 2015, JAMA ophthalmology.

[19]  Anna Szkulmowska,et al.  Flow velocity estimation by complex ambiguity free joint Spectral and Time domain Optical Coherence Tomography. , 2009, Optics express.

[20]  Michel Paques,et al.  The 3D Retinal Capillary Circulation in Pigs Reveals a Predominant Serial Organization. , 2017, Investigative ophthalmology & visual science.

[21]  Xin Sun,et al.  Diagnostic accuracy of optical coherence tomography for the diagnosis of bladder cancer: A systematic review and meta-analysis. , 2019, Photodiagnosis and photodynamic therapy.

[22]  Glenn J Jaffe,et al.  Ranibizumab and bevacizumab for neovascular age-related macular degeneration. , 2011, The New England journal of medicine.

[23]  E. Souied,et al.  Quantitative optical coherence tomography angiography biomarkers for neovascular age-related macular degeneration in remission , 2018, PloS one.

[24]  Dyonne T Hartong,et al.  Retinitis pigmentosa , 2009 .

[25]  Gangjun Liu,et al.  Regression-based algorithm for bulk motion subtraction in optical coherence tomography angiography. , 2017, Biomedical optics express.

[26]  Ian C. Han,et al.  CORRELATION OF MULTIMODAL IMAGING IN SICKLE CELL RETINOPATHY. , 2016, Retina.

[27]  Jeff Fingler,et al.  Phase-contrast OCT imaging of transverse flows in the mouse retina and choroid. , 2008, Investigative ophthalmology & visual science.

[28]  Jennifer K. Sun,et al.  Long-term effects of therapy with ranibizumab on diabetic retinopathy severity and baseline risk factors for worsening retinopathy. , 2015, Ophthalmology.

[29]  Thomas S. Hwang,et al.  Three-dimensional structural and angiographic evaluation of foveal ischemia in diabetic retinopathy: method and validation. , 2019, Biomedical optics express.

[30]  F. Medeiros,et al.  Estimating Optical Coherence Tomography Structural Measurement Floors to Improve Detection of Progression in Advanced Glaucoma. , 2017, American journal of ophthalmology.

[31]  Yue Shi,et al.  Repeatability and Reproducibility of Superficial Macular Retinal Vessel Density Measurements Using Optical Coherence Tomography Angiography En Face Images , 2017, JAMA ophthalmology.

[32]  David Huang,et al.  Automated Quantification of Capillary Nonperfusion Using Optical Coherence Tomography Angiography in Diabetic Retinopathy. , 2016, JAMA ophthalmology.

[33]  Robert N Weinreb,et al.  Peripapillary and Macular Vessel Density in Patients with Primary Open-Angle Glaucoma and Unilateral Visual Field Loss. , 2017, Ophthalmology.

[34]  J. El-Annan,et al.  Adverse reactions to fluorescein angiography: A comprehensive review of the literature. , 2019, Survey of ophthalmology.

[35]  T. Wong,et al.  Incidence of Fellow Eye Involvement in Patients With Unilateral Exudative Age-Related Macular Degeneration , 2018, JAMA ophthalmology.

[36]  Jason Hsu,et al.  Quantification of Diabetic Macular Ischemia Using Optical Coherence Tomography Angiography and Its Relationship with Visual Acuity. , 2017, Ophthalmology.

[37]  M. Quaranta-El Maftouhi,et al.  Chronic central serous chorioretinopathy imaged by optical coherence tomographic angiography. , 2015, American journal of ophthalmology.

[38]  Yali Jia,et al.  Development and validation of a deep learning algorithm for distinguishing the nonperfusion area from signal reduction artifacts on OCT angiography. , 2019, Biomedical optics express.

[39]  B. Lujan,et al.  Classification of Choroidal Neovascularization Using Projection-Resolved Optical Coherence Tomographic Angiography , 2018, Investigative ophthalmology & visual science.

[40]  Motohiro Kamei,et al.  Collateral Vessels in Branch Retinal Vein Occlusion: Anatomic and Functional Analyses by OCT Angiography. , 2019, Ophthalmology. Retina.

[41]  Omer P. Kocaoglu,et al.  A Review of Adaptive Optics Optical Coherence Tomography: Technical Advances, Scientific Applications, and the Future , 2016, Investigative ophthalmology & visual science.

[42]  Robert J Zawadzki,et al.  Review of adaptive optics OCT (AO-OCT): principles and applications for retinal imaging [Invited]. , 2017, Biomedical optics express.

[43]  K Bailey Freund,et al.  Do We Need a New Classification for Choroidal Neovascularization in Age-Related Macular Degeneration? , 2010, Retina.

[44]  J. Shaw,et al.  Global estimates of diabetes prevalence for 2013 and projections for 2035. , 2014, Diabetes Research and Clinical Practice.

[45]  J. Fujimoto,et al.  IMAGE ARTIFACTS IN OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[46]  Richard F Spaide,et al.  Retinal vascular layers in macular telangiectasia type 2 imaged by optical coherence tomographic angiography. , 2015, JAMA ophthalmology.

[47]  Richard G Weleber,et al.  Quantification of Ellipsoid Zone Changes in Retinitis Pigmentosa Using en Face Spectral Domain-Optical Coherence Tomography. , 2016, JAMA ophthalmology.

[48]  E. Souied,et al.  Optical Coherence Tomography Angiography of Type 2 Neovascularization in Age-Related Macular Degeneration. , 2016, Developments in ophthalmology.

[49]  Quantitative evaluation of retinal artery occlusion using optical coherence tomography angiography , 2018, Medicine.

[50]  Ruikang K. Wang,et al.  Methods and algorithms for optical coherence tomography-based angiography: a review and comparison , 2015, Journal of biomedical optics.

[51]  K. Freund,et al.  Correlation between Histologic and OCT Angiography Analysis of Macular Circulation. , 2019, Ophthalmology.

[52]  Brian T. Soetikno,et al.  Volume-Rendered Projection-Resolved OCT Angiography: 3D Lesion Complexity Is Associated With Therapy Response in Wet Age-Related Macular Degeneration , 2018, Investigative ophthalmology & visual science.

[53]  Ruikang K. Wang,et al.  Two-Year Risk of Exudation in Eyes with Non-Exudative AMD and Subclinical Neovascularization Detected with Swept Source OCT Angiography. , 2019, American journal of ophthalmology.

[54]  David Huang,et al.  Automated detection of dilated capillaries on optical coherence tomography angiography. , 2017, Biomedical optics express.

[55]  David J. Wilson,et al.  Sensitivity and Specificity of OCT Angiography to Detect Choroidal Neovascularization. , 2017, Ophthalmology. Retina.

[56]  Francesco Bandello,et al.  Optical Coherence Tomography Angiography: A Useful Tool for Diagnosis of Treatment-Naïve Quiescent Choroidal Neovascularization. , 2016, American journal of ophthalmology.

[57]  David Huang,et al.  Visualization of 3 Distinct Retinal Plexuses by Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy. , 2016, JAMA ophthalmology.

[58]  Marco Lupidi,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY VERSUS TRADITIONAL MULTIMODAL IMAGING IN ASSESSING THE ACTIVITY OF EXUDATIVE AGE-RELATED MACULAR DEGENERATION: A New Diagnostic Challenge , 2015, Retina.

[59]  H. Faatz,et al.  Optical coherence tomography angiography of types 1 and 2 choroidal neovascularization in age-related macular degeneration during anti-VEGF therapy: evaluation of a new quantitative method , 2019, Eye.

[60]  Irene Barbazetto,et al.  Paracentral AcuteMiddleMaculopathy A New Variant of Acute Macular Neuroretinopathy AssociatedWith Retinal Capillary Ischemia , 2013 .

[61]  Adrian Mariampillai,et al.  Optimized speckle variance OCT imaging of microvasculature. , 2010, Optics letters.

[62]  Robert N Weinreb,et al.  Deep Retinal Layer Microvasculature Dropout Detected by the Optical Coherence Tomography Angiography in Glaucoma. , 2016, Ophthalmology.

[63]  Ruikang K. Wang,et al.  Three dimensional optical angiography. , 2007, Optics express.

[64]  David Huang,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF TIME COURSE OF CHOROIDAL NEOVASCULARIZATION IN RESPONSE TO ANTI-ANGIOGENIC TREATMENT , 2015, Retina.

[65]  S. Takagi,et al.  Optical coherence tomography angiography in patients with retinitis pigmentosa who have normal visual acuity , 2018, Acta ophthalmologica.

[66]  David Huang,et al.  Automated detection of shadow artifacts in optical coherence tomography angiography. , 2019, Biomedical optics express.

[67]  Zhenzhen Liang,et al.  Diagnostic accuracy of optical coherence tomography angiography for choroidal neovascularization: a systematic review and meta-analysis , 2019, BMC Ophthalmology.

[68]  David Huang,et al.  OCT Angiography Changes in the 3 Parafoveal Retinal Plexuses in Response to Hyperoxia. , 2017, Ophthalmology. Retina.

[69]  Yali Jia,et al.  Automated segmentation of peripapillary retinal boundaries in OCT combining a convolutional neural network and a multi-weights graph search. , 2019, Biomedical optics express.

[70]  Richard F Spaide,et al.  Volume-Rendered Optical Coherence Tomography of Retinal Vein Occlusion Pilot Study. , 2016, American journal of ophthalmology.

[71]  E. Rahimy,et al.  Acute macular neuroretinopathy: A comprehensive review of the literature. , 2016, Survey of ophthalmology.

[72]  Toco Y P Chui,et al.  Details of Glaucomatous Damage Are Better Seen on OCT En Face Images Than on OCT Retinal Nerve Fiber Layer Thickness Maps. , 2015, Investigative ophthalmology & visual science.

[73]  David Williams,et al.  Noninvasive imaging of the human rod photoreceptor mosaic using a confocal adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[74]  Christopher Bowd,et al.  Measurement Floors and Dynamic Ranges of OCT and OCT Angiography in Glaucoma. , 2019, Ophthalmology.

[75]  T. Yatagai,et al.  Optical coherence angiography. , 2006, Optics express.

[76]  B. J. Klevering,et al.  Morphological and topographical appearance of microaneurysms on optical coherence tomography angiography , 2018, British Journal of Ophthalmology.

[77]  Mayank Bansal,et al.  Optical Coherence Tomography Angiography of Type 1 Neovascularization in Age-Related Macular Degeneration. , 2015, American journal of ophthalmology.

[78]  Donald C. Hood,et al.  A framework for comparing structural and functional measures of glaucomatous damage , 2007, Progress in Retinal and Eye Research.

[79]  Gangjun Liu,et al.  Optimization of the split-spectrum amplitude-decorrelation angiography algorithm on a spectral optical coherence tomography system. , 2015, Optics letters.

[80]  Hans Limburg,et al.  Global causes of blindness and distance vision impairment 1990-2020: a systematic review and meta-analysis. , 2017, The Lancet. Global health.

[81]  Susan Schneider,et al.  Ranibizumab versus verteporfin for neovascular age-related macular degeneration. , 2006, The New England journal of medicine.

[82]  Ruikang K. Wang,et al.  Minimizing projection artifacts for accurate presentation of choroidal neovascularization in OCT micro-angiography. , 2015, Biomedical optics express.

[83]  Yalin Zheng,et al.  Automated layer segmentation of macular OCT images via graph-based SLIC superpixels and manifold ranking approach , 2017, Comput. Medical Imaging Graph..

[84]  David Huang,et al.  Blood flow velocity quantification using split-spectrum amplitude-decorrelation angiography with optical coherence tomography. , 2013, Biomedical optics express.

[85]  A. Senatore,et al.  Macular Features in Retinitis Pigmentosa: Correlations Among Ganglion Cell Complex Thickness, Capillary Density, and Macular Function. , 2016, Investigative ophthalmology & visual science.

[86]  Jonathan S. Chang,et al.  Optical Coherence Tomography Angiography and Ultra-widefield Fluorescein Angiography for Early Detection of Adolescent Sickle Retinopathy. , 2017, American journal of ophthalmology.

[87]  Ting Liu,et al.  Segmentation and quantification of blood vessels for OCT-based micro-angiograms using hybrid shape/intensity compounding. , 2015, Microvascular research.

[88]  Donald T. Miller,et al.  Imaging and quantifying ganglion cells and other transparent neurons in the living human retina , 2017, Proceedings of the National Academy of Sciences.

[89]  Gabriel Coscas,et al.  Optical Coherence Tomography Angiography in Retinal Vein Occlusion: Evaluation of Superficial and Deep Capillary Plexa. , 2016, American journal of ophthalmology.

[90]  Kazuhiro Sasaki,et al.  Three-dimensional retinal and choroidal capillary imaging by power Doppler optical coherence angiography with adaptive optics. , 2012, Optics express.

[91]  B. Rosner,et al.  Variability of full-field electroretinogram responses in subjects without diffuse photoreceptor cell disease. , 2003, Ophthalmology.

[92]  E. Souied,et al.  Macular Microangiopathy in Sickle Cell Disease Using Optical Coherence Tomography Angiography. , 2016, American journal of ophthalmology.

[93]  Dengwang Li,et al.  Quantification of choroidal neovascularization vessel length using optical coherence tomography angiography , 2016, Journal of biomedical optics.

[94]  Adrian Mariampillai,et al.  Speckle variance detection of microvasculature using swept-source optical coherence tomography. , 2008, Optics letters.

[95]  Sandra Rees,et al.  The locations of mitochondria in mammalian photoreceptors: Relation to retinal vasculature , 2008, Brain Research.

[96]  Brian T. Soetikno,et al.  Projection-Resolved OCT Angiography of Microvascular Changes in Paracentral Acute Middle Maculopathy and Acute Macular Neuroretinopathy , 2018, Investigative ophthalmology & visual science.

[97]  Simon S. Gao,et al.  Signal Strength Reduction Effects in OCT Angiography. , 2019, Ophthalmology. Retina.

[98]  J. Izatt,et al.  In vivo bidirectional color Doppler flow imaging of picoliter blood volumes using optical coherence tomography. , 1997, Optics letters.

[99]  Jennifer I. Lim,et al.  Diabetic Retinopathy Preferred Practice Pattern®. , 2019, Ophthalmology.

[100]  Steven T. Bailey,et al.  DETECTION OF CLINICALLY UNSUSPECTED RETINAL NEOVASCULARIZATION WITH WIDE-FIELD OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. , 2019, Retina.

[101]  Jie Wang,et al.  Automated segmentation of retinal layer boundaries and capillary plexuses in wide-field optical coherence tomographic angiography , 2018, Biomedical optics express.

[102]  Wolfgang Drexler,et al.  Visualization of micro-capillaries using optical coherence tomography angiography with and without adaptive optics. , 2017, Biomedical optics express.

[103]  Jennifer K. Sun,et al.  Panretinal Photocoagulation vs Intravitreous Ranibizumab for Proliferative Diabetic Retinopathy: A Randomized Clinical Trial. , 2015, JAMA.

[104]  R. Spaide Optical Coherence Tomography Angiography Signs of Vascular Abnormalization With Antiangiogenic Therapy for Choroidal Neovascularization. , 2015, American journal of ophthalmology.

[105]  Jie Wang,et al.  Maximum value projection produces better en face OCT angiograms than mean value projection. , 2018, Biomedical optics express.

[106]  Alexandra Miere,et al.  TYPE 2 NEOVASCULARIZATION SECONDARY TO AGE-RELATED MACULAR DEGENERATION IMAGED BY OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY , 2015, Retina.

[107]  Galina Dimitrova,et al.  Quantitative Retinal Optical Coherence Tomography Angiography in Patients With Diabetes Without Diabetic Retinopathy. , 2017, Investigative ophthalmology & visual science.

[108]  David Huang,et al.  Compensation for Reflectance Variation in Vessel Density Quantification by Optical Coherence Tomography Angiography , 2016, Investigative ophthalmology & visual science.

[109]  Charles C Wykoff,et al.  Prospective Trial of Treat-and-Extend versus Monthly Dosing for Neovascular Age-Related Macular Degeneration: TREX-AMD 1-Year Results. , 2015, Ophthalmology.

[110]  R. L. Leitão Guerra,et al.  Sickle cell retinopathy: What we now understand using optical coherence tomography angiography. A systematic review. , 2019, Blood reviews.

[111]  David J. Wilson,et al.  Automated Quantification of Nonperfusion Areas in 3 Vascular Plexuses With Optical Coherence Tomography Angiography in Eyes of Patients With Diabetes , 2018, JAMA ophthalmology.

[112]  Ruikang K. Wang,et al.  Projection artifact removal improves visualization and quantitation of macular neovascularization imaged by optical coherence tomography angiography. , 2017, Ophthalmology. Retina.

[113]  Steven T. Bailey,et al.  Detection of Nonexudative Choroidal Neovascularization and Progression to Exudative Choroidal Neovascularization Using OCT Angiography. , 2019, Ophthalmology. Retina.

[114]  Francesco Bandello,et al.  Optical coherence tomography angiography of myopic choroidal neovascularisation , 2016, British Journal of Ophthalmology.

[115]  Robert A. Linsenmeier,et al.  Oxygen distribution in the macaque retina. , 1993, Investigative ophthalmology & visual science.

[116]  L. Zangwill,et al.  Progressive Macula Vessel Density Loss in Primary Open-Angle Glaucoma: A Longitudinal Study. , 2017, American journal of ophthalmology.

[117]  Joey Huang,et al.  Depth-resolved optimization of a real-time sensorless adaptive optics optical coherence tomography. , 2020, Optics letters.

[118]  Jens Dreyhaupt,et al.  Quantity and quality of image artifacts in optical coherence tomography angiography , 2019, PloS one.

[119]  David Huang,et al.  Projection-Resolved Optical Coherence Tomography Angiography of the Peripapillary Retina in Glaucoma. , 2017, American journal of ophthalmology.

[120]  Giacinto Triolo,et al.  Comparison of methods to quantify macular and peripapillary vessel density in optical coherence tomography angiography , 2018, PloS one.

[121]  Emily Y. Chew,et al.  Macular telangiectasia type 2 , 2013, Progress in Retinal and Eye Research.

[122]  B. Francis,et al.  Retinal vessel density from optical coherence tomography angiography to differentiate early glaucoma, pre-perimetric glaucoma and normal eyes , 2017, PloS one.

[123]  Xiyu Liu,et al.  Automatic quantification of choroidal neovascularization lesion area on OCT angiography based on density cell-like P systems with active membranes. , 2018, Biomedical optics express.

[124]  Gangjun Liu,et al.  Handheld Optical Coherence Tomography Angiography and Ultra–Wide-Field Optical Coherence Tomography in Retinopathy of Prematurity , 2017, JAMA ophthalmology.

[125]  Martin F. Kraus,et al.  Split-spectrum amplitude-decorrelation angiography with optical coherence tomography , 2012, Optics express.

[126]  M. Rispoli,et al.  LONGITUDINAL OPTICAL COHERENCE TOMOGRAPHY–ANGIOGRAPHY STUDY OF TYPE 2 NAIVE CHOROIDAL NEOVASCULARIZATION EARLY RESPONSE AFTER TREATMENT , 2015, Retina.

[127]  Jennifer K. Sun,et al.  Guidelines on Diabetic Eye Care: The International Council of Ophthalmology Recommendations for Screening, Follow-up, Referral, and Treatment Based on Resource Settings. , 2018, Ophthalmology.

[128]  A. Fawzi,et al.  SEMIAUTOMATED QUANTITATIVE APPROACH TO CHARACTERIZE TREATMENT RESPONSE IN NEOVASCULAR AGE-RELATED MACULAR DEGENERATION: A Real-World Study , 2017, Retina.

[129]  J. Folk,et al.  Retinal Vein Occlusions Preferred Practice Pattern(®) Guidelines. , 2016, Ophthalmology.

[130]  Fluorescein angiographic risk factors for progression of diabetic retinopathy. ETDRS report number 13. Early Treatment Diabetic Retinopathy Study Research Group. , 1991, Ophthalmology.

[131]  Martin F. Kraus,et al.  Optical coherence tomography angiography of optic disc perfusion in glaucoma. , 2014, Ophthalmology.

[132]  清水 弘一,et al.  Structure of ocular vessels , 1978 .

[133]  R. Spaide Choroidal Neovascularization , 2020, Pathologic Myopia.

[134]  Brandon J Lujan,et al.  Plexus-Specific Detection of Retinal Vascular Pathologic Conditions with Projection-Resolved OCT Angiography. , 2018, Ophthalmology. Retina.

[135]  P. Garred,et al.  Inflammatory cytokines primes retinal pigment epithelial cells to complement activation and deposition of membrane attack complexes by the alternative pathway , 2016 .

[136]  Milan Sonka,et al.  A machine‐learning graph‐based approach for 3D segmentation of Bruch’s membrane opening from glaucomatous SD‐OCT volumes , 2017, Medical Image Anal..

[137]  David Huang,et al.  Optical coherence tomographic angiography of choroidal neovascularization associated with central serous chorioretinopathy. , 2015, JAMA ophthalmology.

[138]  A. Ho,et al.  Paracentral acute middle maculopathy in nonischemic central retinal vein occlusion. , 2014, American journal of ophthalmology.

[139]  R. Spaide,et al.  Retinal vascular layers imaged by fluorescein angiography and optical coherence tomography angiography. , 2015, JAMA ophthalmology.

[140]  E. Souied,et al.  Natural History of Treatment-Naïve Quiescent Choroidal Neovascularization in Age-Related Macular Degeneration Using OCT Angiography. , 2018, Ophthalmology. Retina.

[141]  A. Fawzi,et al.  Progression of subclinical choroidal neovascularization in age-related macular degeneration , 2019, PloS one.

[142]  U. Rajendra Acharya,et al.  Application of different imaging modalities for diagnosis of Diabetic Macular Edema: A review , 2015, Comput. Biol. Medicine.

[143]  Fundus photographic risk factors for progression of diabetic retinopathy. ETDRS report number 12. Early Treatment Diabetic Retinopathy Study Research Group. , 1991, Ophthalmology.

[144]  Aruj Khurana,et al.  Characteristics and quantification of vascular changes in macular telangiectasia type 2 on optical coherence tomography angiography , 2016, British Journal of Ophthalmology.

[145]  Dao-Yi Yu,et al.  Quantitative Comparison of Retinal Capillary Images Derived By Speckle Variance Optical Coherence Tomography With Histology. , 2015, Investigative ophthalmology & visual science.

[146]  Masahiro Fujimoto,et al.  Relationship between Functional and Structural Changes in Diabetic Vessels in Optical Coherence Tomography Angiography , 2016, Scientific Reports.

[147]  K. Freund,et al.  En face OCT angiography demonstrates flow in early type 3 neovascularization (retinal angiomatous proliferation) , 2015, Eye.

[148]  R. Ritch,et al.  STRUCTURAL AND FUNCTIONAL ASSESSMENT OF GLAUCOMATOUS PATIENTS WITH HIGH AND LOW-TENSION OPTIC DISC HEMORRHAGES: A COMPARATIVE STUDY , 2016 .

[149]  Nathan D. Shemonski,et al.  Quantification of Retinal Microvascular Density in Optical Coherence Tomographic Angiography Images in Diabetic Retinopathy , 2017, JAMA ophthalmology.

[150]  Barry Cense,et al.  Imaging retinal capillaries using ultrahigh-resolution optical coherence tomography and adaptive optics. , 2011, Investigative ophthalmology & visual science.

[151]  Y. Murakami,et al.  Correlation between macular blood flow and central visual sensitivity in retinitis pigmentosa , 2014, Acta ophthalmologica.

[152]  J. Fujimoto,et al.  Optical Coherence Tomography , 1991 .

[153]  Katia D. Pacheco,et al.  Evaluation of Macular Vascular Abnormalities Identified by Optical Coherence Tomography Angiography in Sickle Cell Disease. , 2017, American journal of ophthalmology.

[154]  R. Chawla,et al.  Optical Coherence Tomography Angiography Study of Choroidal Neovascularization Associated With Focal Choroidal Excavation. , 2016, Ophthalmic surgery, lasers & imaging retina.

[155]  David Huang,et al.  Projection-resolved optical coherence tomographic angiography. , 2016, Biomedical optics express.

[156]  Giovanni Gregori,et al.  Distribution of Diabetic Neovascularization on Ultra-Widefield Fluorescein Angiography and on Simulated Widefield OCT Angiography. , 2019, American journal of ophthalmology.

[157]  Mahnaz Shahidi,et al.  Method for quantitative assessment of retinal vessel tortuosity in optical coherence tomography angiography applied to sickle cell retinopathy. , 2017, Biomedical optics express.

[158]  L. Yannuzzi,et al.  TYPE 3 NEOVASCULARIZATION: The Expanded Spectrum of Retinal Angiomatous Proliferation , 2008, Retina.

[159]  Akiyoshi Uemura,et al.  Microvascular Abnormalities on Optical Coherence Tomography Angiography in Macular Edema Associated With Branch Retinal Vein Occlusion. , 2016, American journal of ophthalmology.

[160]  Sophie Kubach,et al.  Natural History of Subclinical Neovascularization in Nonexudative Age-Related Macular Degeneration Using Swept-Source OCT Angiography. , 2017, Ophthalmology.

[161]  Nagahisa Yoshimura,et al.  EVALUATION OF MACULAR ISCHEMIA IN EYES WITH BRANCH RETINAL VEIN OCCLUSION: An Optical Coherence Tomography Angiography Study , 2017, Retina.

[162]  Dengwang Li,et al.  Evaluation of Automatically Quantified Foveal Avascular Zone Metrics for Diagnosis of Diabetic Retinopathy Using Optical Coherence Tomography Angiography , 2018, Investigative ophthalmology & visual science.

[163]  Ruikang K. Wang,et al.  SWEPT SOURCE OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY OF NEOVASCULAR MACULAR TELANGIECTASIA TYPE 2 , 2015, Retina.

[164]  Joachim Hornegger,et al.  AN AUTOMATIC, INTERCAPILLARY AREA-BASED ALGORITHM FOR QUANTIFYING DIABETES-RELATED CAPILLARY DROPOUT USING OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY. , 2016, Retina.

[165]  Jong Woo Kim,et al.  Responses of Types 1 and 2 Neovascularization in Age-Related Macular Degeneration to Anti-Vascular Endothelial Growth Factor Treatment: Optical Coherence Tomography Angiography Analysis , 2019, Seminars in ophthalmology.

[166]  S. Bearelly,et al.  Anaphylaxis following intravenous fluorescein angiography in a vitreoretinal clinic: report of 4 cases. , 2009, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.

[167]  Matthew A. Windsor,et al.  Estimating Public and Patient Savings From Basic Research-A Study of Optical Coherence Tomography in Managing Antiangiogenic Therapy. , 2018, American journal of ophthalmology.

[168]  Simon S. Gao,et al.  Optical Coherence Tomography Angiography in Choroideremia: Correlating Choriocapillaris Loss With Overlying Degeneration. , 2016, JAMA ophthalmology.

[169]  David J. Wilson,et al.  Quantitative optical coherence tomography angiography of vascular abnormalities in the living human eye , 2015, Proceedings of the National Academy of Sciences.

[170]  Ruikang K. Wang,et al.  Original articleOptical Coherence Tomography Angiography of Asymptomatic Neovascularization in Intermediate Age-Related Macular Degeneration , 2016 .

[171]  Ruikang K. Wang,et al.  Doppler optical micro-angiography for volumetric imaging of vascular perfusion in vivo. , 2009, Optics express.

[172]  Alberto Diniz-Filho,et al.  Relationship between Optical Coherence Tomography Angiography Vessel Density and Severity of Visual Field Loss in Glaucoma. , 2016, Ophthalmology.

[173]  J. Barton,et al.  Flow measurement without phase information in optical coherence tomography images. , 2005, Optics express.

[174]  Thomas S. Hwang,et al.  Automated Quantification of Nonperfusion in Three Retinal Plexuses Using Projection-Resolved Optical Coherence Tomography Angiography in Diabetic Retinopathy , 2016, Investigative ophthalmology & visual science.

[175]  Delia Cabrera DeBuc,et al.  Deep Learning based Retinal OCT Segmentation , 2018, Comput. Biol. Medicine.

[176]  Carmen A. Puliafito,et al.  Quantifying Microvascular Density and Morphology in Diabetic Retinopathy Using Spectral-Domain Optical Coherence Tomography Angiography , 2016, Investigative ophthalmology & visual science.

[177]  Alexandra Miere,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN EARLY TYPE 3 NEOVASCULARIZATION , 2015, Retina.

[178]  E. Rahimy,et al.  Assessing Deep Retinal Capillary Ischemia in Paracentral Acute Middle Maculopathy by Optical Coherence Tomography Angiography. , 2016, American journal of ophthalmology.

[179]  David Huang,et al.  Optical coherence tomographic angiography of choroidal neovascularization ill-defined with fluorescein angiography , 2016, British Journal of Ophthalmology.

[180]  M. V. Cicinelli,et al.  Vessel density analysis in patients with retinitis pigmentosa by means of optical coherence tomography angiography , 2016, British Journal of Ophthalmology.

[181]  Martin F. Kraus,et al.  Quantitative optical coherence tomography angiography of choroidal neovascularization in age-related macular degeneration. , 2014, Ophthalmology.

[182]  Lei Liu,et al.  Quantifying Microvascular Abnormalities With Increasing Severity of Diabetic Retinopathy Using Optical Coherence Tomography Angiography , 2017, Investigative ophthalmology & visual science.

[183]  David J. Wilson,et al.  OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY FEATURES OF DIABETIC RETINOPATHY , 2015, Retina.

[184]  Simon S. Gao,et al.  Quantitative Evaluation of Choroidal Neovascularization under Pro Re Nata Anti-Vascular Endothelial Growth Factor Therapy with OCT Angiography. , 2018, Ophthalmology. Retina.

[185]  M. V. van Gemert,et al.  Noninvasive imaging of in vivo blood flow velocity using optical Doppler tomography. , 1997, Optics letters.

[186]  Gangjun Liu,et al.  Split-spectrum phase-gradient optical coherence tomography angiography. , 2016, Biomedical optics express.

[187]  Larry D. Hubbard,et al.  Color photography vs fluorescein angiography in the detection of diabetic retinopathy in the diabetes control and complications trial. The Diabetes Control and Complications Trial Research Group. , 1987, Archives of ophthalmology.

[188]  Akitoshi Yoshida,et al.  Optical Coherence Tomography Angiography in Diabetic Retinopathy: A Prospective Pilot Study. , 2015, American journal of ophthalmology.

[189]  S. Srivastava,et al.  OCT Angiography Identification of Choroidal Neovascularization Secondary to Acute Zonal Occult Outer Retinopathy. , 2016, Ophthalmic surgery, lasers & imaging retina.

[190]  B. Klein,et al.  Global Prevalence and Major Risk Factors of Diabetic Retinopathy , 2012, Diabetes Care.

[191]  Abtin Shahlaee,et al.  Optical Coherence Tomography Angiography and En Face Optical Coherence Tomography Features of Paracentral Acute Middle Maculopathy. , 2015, American journal of ophthalmology.

[192]  Daniel M. Schwartz,et al.  Optical imaging of the chorioretinal vasculature in the living human eye , 2013, Proceedings of the National Academy of Sciences.

[193]  Lindsey S. Folio,et al.  Retinal nerve fibre layer and visual function loss in glaucoma: the tipping point , 2011, British Journal of Ophthalmology.

[194]  David Huang,et al.  Enhanced Quantification of Retinal Perfusion by Improved Discrimination of Blood Flow From Bulk Motion Signal in OCTA , 2018, Translational vision science & technology.

[195]  David Huang,et al.  Projection-Resolved Optical Coherence Tomography Angiography of Macular Retinal Circulation in Glaucoma. , 2017, Ophthalmology.

[196]  Sohan Singh Hayreh,et al.  Ocular vascular occlusive disorders: Natural history of visual outcome , 2014, Progress in Retinal and Eye Research.

[197]  D. Pauleikhoff,et al.  ASSOCIATION BETWEEN CHANGES IN MACULAR VASCULATURE IN OPTICAL COHERENCE TOMOGRAPHY- AND FLUORESCEIN- ANGIOGRAPHY AND DISTRIBUTION OF MACULAR PIGMENT IN TYPE 2 IDIOPATHIC MACULAR TELANGIECTASIA , 2015, Retina.

[198]  Steven T. Bailey,et al.  Projection-resolved optical coherence tomography angiography exhibiting early flow prior to clinically observed retinal angiomatous proliferation , 2017, American journal of ophthalmology case reports.

[199]  S. Yoshida,et al.  Optical coherence tomography angiography of the macular microvasculature changes in retinitis pigmentosa , 2018, Acta ophthalmologica.

[200]  N. Moon,et al.  Comparison of Vessel Density Reduction in the Deep and Superficial Capillary Plexuses in Branch Retinal Vein Occlusion , 2019, Ophthalmologica.

[201]  Jay S Duker,et al.  Association of Choroidal Neovascularization and Central Serous Chorioretinopathy With Optical Coherence Tomography Angiography. , 2015, JAMA ophthalmology.

[202]  D. Sarraf,et al.  Vascular anatomy and its relationship to pathology in retinoschisis , 2018, Eye.

[203]  Ruikang K. Wang,et al.  Swept-source OCT angiography of macular telangiectasia type 2. , 2014, Ophthalmic surgery, lasers & imaging retina.

[204]  Long-term Progression of Type 1 Neovascularization in Age-related Macular Degeneration Using Optical Coherence Tomography Angiography. , 2018, American journal of ophthalmology.

[205]  N. D. Wangsa-Wirawan,et al.  Oxygen distribution and consumption in the macaque retina. , 2006, American journal of physiology. Heart and circulatory physiology.

[206]  R. Klein,et al.  Diabetic retinopathy. , 2012, The New England journal of medicine.

[207]  Ahmed M. Hagag,et al.  Projection-Resolved Optical Coherence Tomographic Angiography of Retinal Plexuses in Retinitis Pigmentosa. , 2019, American journal of ophthalmology.

[208]  Myeong Jin Ju,et al.  Multiscale sensorless adaptive optics OCT angiography system for in vivo human retinal imaging , 2017, Journal of biomedical optics.

[209]  Joseph Carroll,et al.  Within-subject assessment of foveal avascular zone enlargement in different stages of diabetic retinopathy using en face OCT reflectance and OCT angiography. , 2018, Biomedical optics express.

[210]  Balint Kovacs,et al.  Relationship between visual field sensitivity and retinal nerve fiber layer thickness as measured by optical coherence tomography. , 2007, Investigative ophthalmology & visual science.

[211]  A C S Tan,et al.  An overview of the clinical applications of optical coherence tomography angiography , 2018, Eye.

[212]  Ruikang K. Wang,et al.  In vivo volumetric imaging of vascular perfusion within human retina and choroids with optical micro-angiography. , 2008, Optics express.

[213]  David Huang,et al.  Reflectance-based projection-resolved optical coherence tomography angiography [Invited]. , 2017, Biomedical optics express.

[214]  R. Carr,et al.  Rates of change differ among measures of visual function in patients with retinitis pigmentosa. , 1996, Ophthalmology.

[215]  K. Hassell Population estimates of sickle cell disease in the U.S. , 2010, American journal of preventive medicine.

[216]  Rosa Dolz-Marco,et al.  Fractal Dimensional Analysis of Optical Coherence Tomography Angiography in Eyes With Diabetic Retinopathy. , 2016, Investigative ophthalmology & visual science.

[217]  Kazuhiro Kurokawa,et al.  Adaptive optics optical coherence tomography angiography for morphometric analysis of choriocapillaris [Invited]. , 2017, Biomedical optics express.

[218]  H. Quigley,et al.  The number of people with glaucoma worldwide in 2010 and 2020 , 2006, British Journal of Ophthalmology.

[219]  R. Klein,et al.  Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: a systematic review and meta-analysis. , 2014, The Lancet. Global health.

[220]  R. Rosen,et al.  VALUE OF FRACTAL ANALYSIS OF OPTICAL COHERENCE TOMOGRAPHY ANGIOGRAPHY IN VARIOUS STAGES OF DIABETIC RETINOPATHY , 2017, Retina.

[221]  Amani A. Fawzi,et al.  Human Parafoveal Capillary Vascular Anatomy and Connectivity Revealed by Optical Coherence Tomography Angiography , 2018, Investigative ophthalmology & visual science.

[222]  A. Keech,et al.  Biomarkers in Diabetic Retinopathy. , 2015, The review of diabetic studies : RDS.

[223]  Dengwang Li,et al.  Automated boundary detection of the optic disc and layer segmentation of the peripapillary retina in volumetric structural and angiographic optical coherence tomography. , 2017, Biomedical optics express.

[224]  Gangjun Liu,et al.  Calibration of optical coherence tomography angiography with a microfluidic chip , 2016, Journal of biomedical optics.

[225]  Catherine Egan,et al.  Systematic Evaluation of Optical Coherence Tomography Angiography in Retinal Vein Occlusion. , 2016, American journal of ophthalmology.

[226]  K. Ghasemi Falavarjani,et al.  En Face Optical Coherence Tomography Analysis to Assess the Spectrum of Perivenular Ischemia and Paracentral Acute Middle Maculopathy in Retinal Vein Occlusion. , 2017, American journal of ophthalmology.

[227]  Ruikang K. Wang,et al.  Optical microangiography provides depth-resolved images of directional ocular blood perfusion in posterior eye segment. , 2010, Journal of biomedical optics.

[228]  Thomas S. Hwang,et al.  Wide-Field OCT Angiography Investigation of the Relationship Between Radial Peripapillary Capillary Plexus Density and Nerve Fiber Layer Thickness , 2017, Investigative ophthalmology & visual science.

[229]  E. Souied,et al.  Functional characterization and multimodal imaging of treatment-naive "quiescent" choroidal neovascularization. , 2013, Investigative ophthalmology & visual science.

[230]  P. Mitchell,et al.  Age-related macular degeneration , 2018, The Lancet.

[231]  David Huang,et al.  Optical Coherence Tomography Angiography Vessel Density in Healthy, Glaucoma Suspect, and Glaucoma Eyes , 2016, Investigative ophthalmology & visual science.

[232]  Gislin Dagnelie,et al.  Test-retest, within-visit variability of Goldmann visual fields in retinitis pigmentosa. , 2011, Investigative ophthalmology & visual science.

[233]  A. Dubra,et al.  Reflective afocal broadband adaptive optics scanning ophthalmoscope , 2011, Biomedical optics express.

[234]  David Huang,et al.  Fast and robust standard-deviation-based method for bulk motion compensation in phase-based functional OCT. , 2018, Optics letters.

[235]  C. Brand,et al.  Management of retinal vascular diseases: a patient-centric approach , 2012, Eye.

[236]  Xincheng Yao,et al.  Computer-aided classification of sickle cell retinopathy using quantitative features in optical coherence tomography angiography. , 2017, Biomedical optics express.

[237]  Andrew R. Miller,et al.  Artifactual Flow Signals Within Drusen Detected by OCT Angiography. , 2016, Ophthalmic surgery, lasers & imaging retina.

[238]  Ruikang K. Wang,et al.  Peripapillary Retinal Nerve Fiber Layer Vascular Microcirculation in Glaucoma Using Optical Coherence Tomography–Based Microangiography , 2016, Investigative ophthalmology & visual science.

[239]  Xincheng Yao,et al.  Quantitative characteristics of sickle cell retinopathy in optical coherence tomography angiography. , 2017, Biomedical optics express.

[240]  U. Schmidt-Erfurth,et al.  A view of the current and future role of optical coherence tomography in the management of age-related macular degeneration , 2017, Eye.

[241]  David Huang,et al.  Advanced image processing for optical coherence tomographic angiography of macular diseases. , 2015, Biomedical optics express.

[242]  Sanjay Sharma,et al.  Intravenous fluorescein angiography-associated adverse reactions. , 2016, Canadian journal of ophthalmology. Journal canadien d'ophtalmologie.