Quasi-Monte Carlo Image Synthesis in a Nutshell
暂无分享,去创建一个
[1] Ryutarou Ohbuchi,et al. Quasi-Monte Carlo rendering with adaptive sampling , 1996 .
[2] Alexander Keller,et al. Quasi-Monte Carlo Progressive Photon Mapping , 2012 .
[3] J. Halton. On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .
[4] H. Friedrich,et al. Ermakow, S. M., Die Monte-Carlo-Methode und verwandte Fragen. 291 S., Berlin 1975. VEB Deutscher Verlag der Wissenschaften. M 62,- , 1976 .
[5] Harald Niederreiter,et al. Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.
[6] H. Jensen. Realistic Image Synthesis Using Photon Mapping , 2001 .
[7] Y. Wang,et al. An Historical Overview of Lattice Point Sets , 2002 .
[8] F. Pillichshammer,et al. Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .
[9] Fred J. Hickernell,et al. Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .
[10] Frances Y. Kuo,et al. Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..
[11] L. Devroye. Non-Uniform Random Variate Generation , 1986 .
[12] Harald Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .
[13] Peter Shirley,et al. Realistic ray tracing , 2000 .
[14] Harald Niederreiter,et al. Error bounds for Quasi-Monte Carlo integration with uniform point sets , 2003 .
[15] Leonidas J. Guibas,et al. Robust Monte Carlo methods for light transport simulation , 1997 .
[16] Henrik Wann Jensen,et al. Global Illumination using Photon Maps , 1996, Rendering Techniques.
[17] Andrew S. Glassner,et al. Principles of Digital Image Synthesis , 1995 .
[18] I. M. Soboĺ,et al. Die Monte-Carlo-Methode , 1971 .
[19] Holger Dammertz,et al. Acceleration methods for ray tracing based global illumination , 2011 .
[20] H. Weyl. Über die Gleichverteilung von Zahlen mod. Eins , 1916 .
[21] Frances Y. Kuo,et al. Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..
[22] Leonidas J. Guibas,et al. Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.
[23] Edmund Hlawka,et al. Über eine Transformation von gleichverteilten Folgen II , 2005, Computing.
[24] Derek Nowrouzezahrai,et al. Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..
[25] H. Faure. Good permutations for extreme discrepancy , 1992 .
[26] Alexander Keller,et al. Deterministic Consistent Density Estimation for Light Transport Simulation , 2013 .
[27] R. Caflisch. Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.
[28] Johannes Hanika,et al. Spectral light transport simulation using a precision-based ray tracing architecture , 2011 .
[29] H. Woxniakowski. Information-Based Complexity , 1988 .
[30] Ronald Cools,et al. Different Quality Indexes for Lattice Rules , 1997, J. Complex..
[31] P. L’Ecuyer,et al. Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules , 2015, ACM Trans. Math. Softw..
[32] F. Pillichshammer,et al. Digital Nets and Sequences: Nets and sequences , 2010 .
[33] Alexander Keller,et al. Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .
[34] R. Cranley,et al. Randomization of Number Theoretic Methods for Multiple Integration , 1976 .
[35] Alexander Keller,et al. Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration , 2002 .
[36] Jerome Spanier,et al. Accelerating the Convergence of Lattice Methods by Importance Sampling-Based Transformations , 2012 .
[37] D. G. Van Antwerpen,et al. Unbiased physically based rendering on the GPU , 2011 .
[38] A. Owen. Monte Carlo Variance of Scrambled Net Quadrature , 1997 .
[39] Jirí Matousek,et al. On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..
[40] Matthias Zwicker,et al. Progressive photon mapping: A probabilistic approach , 2011, TOGS.
[41] Pierre L'Ecuyer,et al. Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .
[42] Dimitri P. Bertsekas,et al. A Quasi Monte Carlo Method for Large-Scale Inverse Problems , 2012 .
[43] Peter Kritzer,et al. On an example of finite hybrid quasi-Monte Carlo point sets , 2012 .
[44] A. Owen,et al. Safe and Effective Importance Sampling , 2000 .
[45] Neel Joshi. Motion Blur , 2014, Computer Vision, A Reference Guide.
[46] Alexander Keller,et al. Unbiased Global Illumination with Participating Media , 2008 .
[47] Eric P. Lafortune,et al. Mathematical Models and Monte Carlo Algorithms for Physically Based Rendering , 1995 .
[48] Edmund Hlawka,et al. Discrepancy and Riemann Integration , 1990 .
[49] H. Faure. Discrépance de suites associées à un système de numération (en dimension s) , 1982 .
[50] I. Sobol. On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .
[51] Harald Niederreiter,et al. Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .
[52] A. Owen. Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .
[53] Alexander Keller. Trajectory Splitting by Restricted Replication , 2004, Monte Carlo Methods Appl..
[54] Fred J. Hickernell,et al. Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..
[55] Hee Sun Hong,et al. Digital Nets and Sequences for Quasi-Monte Carlo Methods , 2022, ArXiv.
[56] S. Dammertz,et al. Image Synthesis by Rank-1 Lattices , 2008 .
[57] Bart Vandewoestyne. Quasi-Monte Carlo Techniques for the Approximation of High-Dimensional Integrals (Quasi-Monte Carlo technieken voor het benaderen van integralen over hoog-dimensionale gebieden) , 2008 .
[58] Alexander Keller,et al. Efficient Ray Tracing without Auxiliary Acceleration Data Structure , 2011 .
[59] Alexander Keller. Quasi-Monte Carlo Methods in Computer Graphics: The Global Illumination Problem , 1995 .
[60] S. K. Zaremba,et al. La discrépance isotrope et l'intégration numérique , 1970 .
[61] Hendrik P. A. Lensch,et al. General Spectral Camera Lens Simulation , 2011, Comput. Graph. Forum.
[62] H. Niederreiter,et al. Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .
[63] Kei Iwasaki,et al. Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media , 2010, SIGGRAPH 2010.
[64] C. Lemieux. Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .
[65] Alexander Keller,et al. Efficient Multidimensional Sampling , 2002, Comput. Graph. Forum.
[66] Peter Shirley,et al. Discrepancy as a Quality Measure for Sample Distributions , 1991, Eurographics.
[67] F. Pillichshammer,et al. Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .
[68] Wolfgang Heidrich,et al. Interleaved Sampling , 2001, Rendering Techniques.
[69] David Edwards. Practical sampling for ray-based rendering , 2008 .
[70] Carsten Alexander Wächter. Quasi Monte Carlo light transport simulation by efficient ray tracing , 2007 .
[71] Spassimir H. Paskov. Termination Criteria for Linear Problems , 1995, J. Complex..
[72] Peter Kritzer,et al. Component-by-Component Construction of Hybrid Point Sets Based on Hammersley and Lattice Point Sets , 2013 .
[73] Derek Nowrouzezahrai,et al. Learning hatching for pen-and-ink illustration of surfaces , 2012, TOGS.
[74] J. M. Sek,et al. On the L2-discrepancy for anchored boxes , 1998 .
[75] Leonidas J. Guibas,et al. Metropolis light transport , 1997, SIGGRAPH.
[76] Alexander Keller,et al. Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals , 2012 .
[77] Benjamin J. Waterhouse,et al. A Global Adaptive Quasi-Monte Carlo Algorithm for Functions of Low Truncation Dimension Applied to Problems from Finance , 2012 .
[78] Alexander Keller,et al. Myths of Computer Graphics , 2006 .
[79] Derek Nowrouzezahrai,et al. Progressive Virtual Beam Lights , 2012, Comput. Graph. Forum.
[80] H. Niederreiter,et al. Quasirandom Sampling in Computer Graphics , 1992 .
[81] Jacopo Pantaleoni,et al. A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..
[82] I. Sobol,et al. Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .
[83] Alexander Keller,et al. (t,m,s)-Nets and Maximized Minimum Distance, Part II , 2009 .
[84] William H. Press,et al. Numerical recipes in C , 2002 .
[85] Wojciech Matusik,et al. A data-driven reflectance model , 2003, ACM Trans. Graph..
[86] Alexander Keller,et al. Parallel Quasi-Monte Carlo Integration by Partitioning Low Discrepancy Sequences , 2012 .
[87] Roger Hernando Buch,et al. Physically-based rendering of human skin , 2015 .
[88] C. D. Kemp,et al. Density Estimation for Statistics and Data Analysis , 1987 .
[89] Jerome Spanier,et al. Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..
[90] T. Kollig,et al. Illumination in the Presence of Weak Singularities , 2006 .
[91] Johannes Hanika,et al. Plane Sampling for Light Paths from the Environment Map , 2009, J. Graphics, GPU, & Game Tools.
[92] Frances Y. Kuo,et al. Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.
[93] I. Sloan. Lattice Methods for Multiple Integration , 1994 .
[94] Mark A. Kon,et al. Review: J. F. Traub, G. W. Wasilkowski and H. Woźniakowski, Information-based complexity , 1989 .
[95] P. Erdos,et al. Studies in Pure Mathematics , 1983 .