Quasi-Monte Carlo Image Synthesis in a Nutshell

This self-contained tutorial surveys the state of the art in quasi-Monte Carlo rendering algorithms as used for image synthesis in the product design and movie industry. Based on the number theoretic constructions of low discrepancy sequences, it explains techniques to generate light transport paths to connect cameras and light sources. Summing up their contributions on the image plane results in a consistent numerical algorithm, which due to the superior uniformity of low discrepancy sequences often converges faster than its (pseudo-) random counterparts. In addition, its deterministic nature allows for simple and efficient parallelization while guaranteeing exact reproducibility. The underlying techniques of parallel quasi-Monte Carlo integro-approximation, the high speed generation of quasi-Monte Carlo points, treating weak singularities in a robust way, and high performance ray tracing have many applications outside computer graphics, too.

[1]  Ryutarou Ohbuchi,et al.  Quasi-Monte Carlo rendering with adaptive sampling , 1996 .

[2]  Alexander Keller,et al.  Quasi-Monte Carlo Progressive Photon Mapping , 2012 .

[3]  J. Halton On the efficiency of certain quasi-random sequences of points in evaluating multi-dimensional integrals , 1960 .

[4]  H. Friedrich,et al.  Ermakow, S. M., Die Monte-Carlo-Methode und verwandte Fragen. 291 S., Berlin 1975. VEB Deutscher Verlag der Wissenschaften. M 62,- , 1976 .

[5]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[6]  H. Jensen Realistic Image Synthesis Using Photon Mapping , 2001 .

[7]  Y. Wang,et al.  An Historical Overview of Lattice Point Sets , 2002 .

[8]  F. Pillichshammer,et al.  Digital Nets and Sequences: Discrepancy Theory and Quasi-Monte Carlo Integration , 2010 .

[9]  Fred J. Hickernell,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2000 , 2002 .

[10]  Frances Y. Kuo,et al.  Constructing Sobol Sequences with Better Two-Dimensional Projections , 2008, SIAM J. Sci. Comput..

[11]  L. Devroye Non-Uniform Random Variate Generation , 1986 .

[12]  Harald Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2006 , 2007 .

[13]  Peter Shirley,et al.  Realistic ray tracing , 2000 .

[14]  Harald Niederreiter,et al.  Error bounds for Quasi-Monte Carlo integration with uniform point sets , 2003 .

[15]  Leonidas J. Guibas,et al.  Robust Monte Carlo methods for light transport simulation , 1997 .

[16]  Henrik Wann Jensen,et al.  Global Illumination using Photon Maps , 1996, Rendering Techniques.

[17]  Andrew S. Glassner,et al.  Principles of Digital Image Synthesis , 1995 .

[18]  I. M. Soboĺ,et al.  Die Monte-Carlo-Methode , 1971 .

[19]  Holger Dammertz,et al.  Acceleration methods for ray tracing based global illumination , 2011 .

[20]  H. Weyl Über die Gleichverteilung von Zahlen mod. Eins , 1916 .

[21]  Frances Y. Kuo,et al.  Constructing Embedded Lattice Rules for Multivariate Integration , 2006, SIAM J. Sci. Comput..

[22]  Leonidas J. Guibas,et al.  Optimally combining sampling techniques for Monte Carlo rendering , 1995, SIGGRAPH.

[23]  Edmund Hlawka,et al.  Über eine Transformation von gleichverteilten Folgen II , 2005, Computing.

[24]  Derek Nowrouzezahrai,et al.  Virtual ray lights for rendering scenes with participating media , 2012, ACM Trans. Graph..

[25]  H. Faure Good permutations for extreme discrepancy , 1992 .

[26]  Alexander Keller,et al.  Deterministic Consistent Density Estimation for Light Transport Simulation , 2013 .

[27]  R. Caflisch Monte Carlo and quasi-Monte Carlo methods , 1998, Acta Numerica.

[28]  Johannes Hanika,et al.  Spectral light transport simulation using a precision-based ray tracing architecture , 2011 .

[29]  H. Woxniakowski Information-Based Complexity , 1988 .

[30]  Ronald Cools,et al.  Different Quality Indexes for Lattice Rules , 1997, J. Complex..

[31]  P. L’Ecuyer,et al.  Algorithm 958: Lattice Builder: A General Software Tool for Constructing Rank-1 Lattice Rules , 2015, ACM Trans. Math. Softw..

[32]  F. Pillichshammer,et al.  Digital Nets and Sequences: Nets and sequences , 2010 .

[33]  Alexander Keller,et al.  Fast Generation of Randomized Low-Discrepancy Point Sets , 2002 .

[34]  R. Cranley,et al.  Randomization of Number Theoretic Methods for Multiple Integration , 1976 .

[35]  Alexander Keller,et al.  Efficient Bidirectional Path Tracing by Randomized Quasi-Monte Carlo Integration , 2002 .

[36]  Jerome Spanier,et al.  Accelerating the Convergence of Lattice Methods by Importance Sampling-Based Transformations , 2012 .

[37]  D. G. Van Antwerpen,et al.  Unbiased physically based rendering on the GPU , 2011 .

[38]  A. Owen Monte Carlo Variance of Scrambled Net Quadrature , 1997 .

[39]  Jirí Matousek,et al.  On the L2-Discrepancy for Anchored Boxes , 1998, J. Complex..

[40]  Matthias Zwicker,et al.  Progressive photon mapping: A probabilistic approach , 2011, TOGS.

[41]  Pierre L'Ecuyer,et al.  Monte Carlo and Quasi-Monte Carlo Methods 2008 , 2009 .

[42]  Dimitri P. Bertsekas,et al.  A Quasi Monte Carlo Method for Large-Scale Inverse Problems , 2012 .

[43]  Peter Kritzer,et al.  On an example of finite hybrid quasi-Monte Carlo point sets , 2012 .

[44]  A. Owen,et al.  Safe and Effective Importance Sampling , 2000 .

[45]  Neel Joshi Motion Blur , 2014, Computer Vision, A Reference Guide.

[46]  Alexander Keller,et al.  Unbiased Global Illumination with Participating Media , 2008 .

[47]  Eric P. Lafortune,et al.  Mathematical Models and Monte Carlo Algorithms for Physically Based Rendering , 1995 .

[48]  Edmund Hlawka,et al.  Discrepancy and Riemann Integration , 1990 .

[49]  H. Faure Discrépance de suites associées à un système de numération (en dimension s) , 1982 .

[50]  I. Sobol On the distribution of points in a cube and the approximate evaluation of integrals , 1967 .

[51]  Harald Niederreiter,et al.  Monte Carlo and quasi-Monte Carlo methods 2004 , 2006 .

[52]  A. Owen Randomly Permuted (t,m,s)-Nets and (t, s)-Sequences , 1995 .

[53]  Alexander Keller Trajectory Splitting by Restricted Replication , 2004, Monte Carlo Methods Appl..

[54]  Fred J. Hickernell,et al.  Extensible Lattice Sequences for Quasi-Monte Carlo Quadrature , 2000, SIAM J. Sci. Comput..

[55]  Hee Sun Hong,et al.  Digital Nets and Sequences for Quasi-Monte Carlo Methods , 2022, ArXiv.

[56]  S. Dammertz,et al.  Image Synthesis by Rank-1 Lattices , 2008 .

[57]  Bart Vandewoestyne Quasi-Monte Carlo Techniques for the Approximation of High-Dimensional Integrals (Quasi-Monte Carlo technieken voor het benaderen van integralen over hoog-dimensionale gebieden) , 2008 .

[58]  Alexander Keller,et al.  Efficient Ray Tracing without Auxiliary Acceleration Data Structure , 2011 .

[59]  Alexander Keller Quasi-Monte Carlo Methods in Computer Graphics: The Global Illumination Problem , 1995 .

[60]  S. K. Zaremba,et al.  La discrépance isotrope et l'intégration numérique , 1970 .

[61]  Hendrik P. A. Lensch,et al.  General Spectral Camera Lens Simulation , 2011, Comput. Graph. Forum.

[62]  H. Niederreiter,et al.  Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing , 1995 .

[63]  Kei Iwasaki,et al.  Unbiased, adaptive stochastic sampling for rendering inhomogeneous participating media , 2010, SIGGRAPH 2010.

[64]  C. Lemieux Monte Carlo and Quasi-Monte Carlo Sampling , 2009 .

[65]  Alexander Keller,et al.  Efficient Multidimensional Sampling , 2002, Comput. Graph. Forum.

[66]  Peter Shirley,et al.  Discrepancy as a Quality Measure for Sample Distributions , 1991, Eurographics.

[67]  F. Pillichshammer,et al.  Discrepancy Theory and Quasi-Monte Carlo Integration , 2014 .

[68]  Wolfgang Heidrich,et al.  Interleaved Sampling , 2001, Rendering Techniques.

[69]  David Edwards Practical sampling for ray-based rendering , 2008 .

[70]  Carsten Alexander Wächter Quasi Monte Carlo light transport simulation by efficient ray tracing , 2007 .

[71]  Spassimir H. Paskov Termination Criteria for Linear Problems , 1995, J. Complex..

[72]  Peter Kritzer,et al.  Component-by-Component Construction of Hybrid Point Sets Based on Hammersley and Lattice Point Sets , 2013 .

[73]  Derek Nowrouzezahrai,et al.  Learning hatching for pen-and-ink illustration of surfaces , 2012, TOGS.

[74]  J. M. Sek,et al.  On the L2-discrepancy for anchored boxes , 1998 .

[75]  Leonidas J. Guibas,et al.  Metropolis light transport , 1997, SIGGRAPH.

[76]  Alexander Keller,et al.  Enumerating Quasi-Monte Carlo Point Sequences in Elementary Intervals , 2012 .

[77]  Benjamin J. Waterhouse,et al.  A Global Adaptive Quasi-Monte Carlo Algorithm for Functions of Low Truncation Dimension Applied to Problems from Finance , 2012 .

[78]  Alexander Keller,et al.  Myths of Computer Graphics , 2006 .

[79]  Derek Nowrouzezahrai,et al.  Progressive Virtual Beam Lights , 2012, Comput. Graph. Forum.

[80]  H. Niederreiter,et al.  Quasirandom Sampling in Computer Graphics , 1992 .

[81]  Jacopo Pantaleoni,et al.  A path space extension for robust light transport simulation , 2012, ACM Trans. Graph..

[82]  I. Sobol,et al.  Construction and Comparison of High-Dimensional Sobol' Generators , 2011 .

[83]  Alexander Keller,et al.  (t,m,s)-Nets and Maximized Minimum Distance, Part II , 2009 .

[84]  William H. Press,et al.  Numerical recipes in C , 2002 .

[85]  Wojciech Matusik,et al.  A data-driven reflectance model , 2003, ACM Trans. Graph..

[86]  Alexander Keller,et al.  Parallel Quasi-Monte Carlo Integration by Partitioning Low Discrepancy Sequences , 2012 .

[87]  Roger Hernando Buch,et al.  Physically-based rendering of human skin , 2015 .

[88]  C. D. Kemp,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[89]  Jerome Spanier,et al.  Quasi-Random Methods for Estimating Integrals Using Relatively Small Samples , 1994, SIAM Rev..

[90]  T. Kollig,et al.  Illumination in the Presence of Weak Singularities , 2006 .

[91]  Johannes Hanika,et al.  Plane Sampling for Light Paths from the Environment Map , 2009, J. Graphics, GPU, & Game Tools.

[92]  Frances Y. Kuo,et al.  Remark on algorithm 659: Implementing Sobol's quasirandom sequence generator , 2003, TOMS.

[93]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[94]  Mark A. Kon,et al.  Review: J. F. Traub, G. W. Wasilkowski and H. Woźniakowski, Information-based complexity , 1989 .

[95]  P. Erdos,et al.  Studies in Pure Mathematics , 1983 .