Demonstrating the Evolution of Complex Genetic Representations: An Evolution of Artificial Plants

A common idea is that complex evolutionary adaptation is enabled by complex genetic representations of phenotypic traits. This paper demonstrates how, according to a recently developed theory, genetic representations can self-adapt in favor of evolvability, i.e., the chance of adaptive mutations. The key for the adaptability of genetic representations is neutrality inherent in non-trivial genotype-phenotype mappings and neutral mutations that allow for transitions between genetic representations of the same phenotype. We model an evolution of artificial plants, encoded by grammar-like genotypes, to demonstrate this theory.

[1]  G. Wagner,et al.  Epistasis and the mutation load: a measurement-theoretical approach. , 2001, Genetics.

[2]  David E. Goldberg,et al.  A Survey of Optimization by Building and Using Probabilistic Models , 2002, Comput. Optim. Appl..

[3]  Hiroaki Kitano,et al.  Designing Neural Networks Using Genetic Algorithms with Graph Generation System , 1990, Complex Syst..

[4]  L. Altenberg,et al.  PERSPECTIVE: COMPLEX ADAPTATIONS AND THE EVOLUTION OF EVOLVABILITY , 1996, Evolution; international journal of organic evolution.

[5]  G. Wagner,et al.  Modeling genetic architecture: a multilinear theory of gene interaction. , 2001, Theoretical population biology.

[6]  Przemyslaw Prusinkiewicz,et al.  Lindenmayer Systems, Fractals, and Plants , 1989, Lecture Notes in Biomathematics.

[7]  Simon M. Lucas,et al.  Growing adaptive neural networks with graph grammars , 1995, ESANN.

[8]  Marc Toussaint,et al.  On the Evolution of Phenotypic Exploration Distributions , 2002, FOGA.

[9]  Jordan B. Pollack,et al.  Evolving L-systems to generate virtual creatures , 2001, Comput. Graph..

[10]  F. Eeckman,et al.  Evolution and Biocomputation: Computational Models of Evolution , 1995 .

[11]  Günter P. Wagner,et al.  Genetic measurement theory of epistatic effects , 2004, Genetica.

[12]  Gregory S. Hornby,et al.  The advantages of generative grammatical encodings for physical design , 2001, Proceedings of the 2001 Congress on Evolutionary Computation (IEEE Cat. No.01TH8546).

[13]  Frédéric Gruau,et al.  Automatic Definition of Modular Neural Networks , 1994, Adapt. Behav..

[14]  Thomas Bäck,et al.  Evolutionary algorithms in theory and practice - evolution strategies, evolutionary programming, genetic algorithms , 1996 .

[15]  G. Wagner,et al.  A POPULATION GENETIC THEORY OF CANALIZATION , 1997, Evolution; international journal of organic evolution.

[16]  D. Fogel Evolutionary algorithms in theory and practice , 1997, Complex..

[17]  Przemyslaw Prusinkiewicz,et al.  The Algorithmic Beauty of Plants , 1990, The Virtual Laboratory.

[18]  Lee Altenberg,et al.  Genome Growth and the Evolution of the Genotype-Phenotype Map , 1995, Evolution and Biocomputation.

[19]  Günter P. Wagner,et al.  Complex Adaptations and the Evolution of Evolvability , 2005 .

[20]  J. Pollack,et al.  A computational model of symbiotic composition in evolutionary transitions. , 2003, Bio Systems.

[21]  R. Riedl A Systems-Analytical Approach to Macro-Evolutionary Phenomena , 1977, The Quarterly Review of Biology.