Estradiol and mTORC2 cooperate to enhance prostaglandin biosynthesis and tumorigenesis in TSC2-deficient LAM cells

Estradiol enhances COX-2 expression and prostaglandin biosynthesis in TSC2-deficient cells via a rapamycin-insensitive, mTORC2-dependent mechanism.

[1]  Lisa Minor,et al.  Cell Viability Assays , 2016 .

[2]  E. Roach,et al.  Tuberous sclerosis complex. , 2015, Handbook of clinical neurology.

[3]  D. Wheeler,et al.  Nuclear EGFR as a molecular target in cancer. , 2013, Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology.

[4]  W. Travis,et al.  Lymphangioleiomyomatosis: calling it what it is: a low-grade, destructive, metastasizing neoplasm. , 2012, American journal of respiratory and critical care medicine.

[5]  V. Krymskaya Treatment option(s) for pulmonary lymphangioleiomyomatosis: progress and current challenges. , 2012, American journal of respiratory cell and molecular biology.

[6]  E. Henske,et al.  Lymphangioleiomyomatosis - a wolf in sheep's clothing. , 2012, The Journal of clinical investigation.

[7]  Summer L. Gibbs,et al.  Real-Time Monitoring of Tumorigenesis, Dissemination, & Drug Response in a Preclinical Model of Lymphangioleiomyomatosis/Tuberous Sclerosis Complex , 2012, PloS one.

[8]  C. Hudis,et al.  Increased levels of COX-2 and prostaglandin E2 contribute to elevated aromatase expression in inflamed breast tissue of obese women. , 2012, Cancer discovery.

[9]  A. Sonntag,et al.  A Dynamic Network Model of mTOR Signaling Reveals TSC-Independent mTORC2 Regulation , 2012, Science Signaling.

[10]  D. Kwiatkowski,et al.  Therapeutic Trial of Metformin and Bortezomib in a Mouse Model of Tuberous Sclerosis Complex (TSC) , 2012, PloS one.

[11]  T. Hartman,et al.  Frequency of undiagnosed cystic lung disease in patients with sporadic renal angiomyolipomas. , 2012, Chest.

[12]  D. Kwiatkowski,et al.  Tumorigenesis in tuberous sclerosis complex is autophagy and p62/sequestosome 1 (SQSTM1)-dependent , 2011, Proceedings of the National Academy of Sciences.

[13]  J. Krischer,et al.  Efficacy and safety of sirolimus in lymphangioleiomyomatosis. , 2011, The New England journal of medicine.

[14]  E. Henske,et al.  Non-canonical functions of the tuberous sclerosis complex-Rheb signalling axis , 2011, EMBO molecular medicine.

[15]  Yang Xia,et al.  Detrimental effects of adenosine signaling in sickle cell disease , 2011, Nature Medicine.

[16]  Anne M. Evans,et al.  Organization of GC/MS and LC/MS metabolomics data into chemical libraries , 2010, J. Cheminformatics.

[17]  Qicheng Ma,et al.  Activation of a metabolic gene regulatory network downstream of mTOR complex 1. , 2010, Molecular cell.

[18]  B. Manning The Role of Target of Rapamycin Signaling in Tuberous Sclerosis Complex , 2010 .

[19]  J. Moss,et al.  The natural history of lymphangioleiomyomatosis: markers of severity, rate of progression and prognosis. , 2010, Lymphatic research and biology.

[20]  R. DuBois,et al.  Eicosanoids and cancer , 2010, Nature Reviews Cancer.

[21]  R. Jensen,et al.  Rapamycin-insensitive up-regulation of MMP2 and other genes in tuberous sclerosis complex 2-deficient lymphangioleiomyomatosis-like cells. , 2010, American journal of respiratory cell and molecular biology.

[22]  B. Molnár,et al.  Reversal of gene expression changes in the colorectal normal-adenoma pathway by NS398 selective COX2 inhibitor , 2010, British Journal of Cancer.

[23]  B. Trapnell,et al.  Molecular basis of pulmonary disease , 2010 .

[24]  E. Henske,et al.  Dysregulation of TOR Signaling in Tuberous Sclerosis and Lymphangioleiomyomotosis , 2010 .

[25]  Corey D. DeHaven,et al.  Integrated, nontargeted ultrahigh performance liquid chromatography/electrospray ionization tandem mass spectrometry platform for the identification and relative quantification of the small-molecule complement of biological systems. , 2009, Analytical chemistry.

[26]  E. Henske,et al.  Estrogen promotes the survival and pulmonary metastasis of tuberin-null cells , 2009, Proceedings of the National Academy of Sciences.

[27]  John T. Wei,et al.  Metabolomic profiles delineate potential role for sarcosine in prostate cancer progression , 2009, Nature.

[28]  D. Nie,et al.  Cyclooxygenases, prostanoids, and tumor progression , 2007, Cancer and Metastasis Reviews.

[29]  M. Hughes-Fulford,et al.  Glycosylation regulates turnover of cyclooxygenase‐2 , 2006, FEBS letters.

[30]  P. Crino,et al.  The tuberous sclerosis complex. , 2006, The New England journal of medicine.

[31]  M. Backlund,et al.  Mechanisms of Disease: inflammatory mediators and cancer prevention , 2005, Nature Clinical Practice Oncology.

[32]  D. Rader,et al.  COX-2-Derived Prostacyclin Confers Atheroprotection on Female Mice , 2004, Science.

[33]  Rolf Müller,et al.  Crosstalk of oncogenic and prostanoid signaling pathways , 2004, Journal of Cancer Research and Clinical Oncology.

[34]  E. Henske,et al.  Estradiol and tamoxifen stimulate LAM-associated angiomyolipoma cell growth and activate both genomic and nongenomic signaling pathways. , 2004, American journal of physiology. Lung cellular and molecular physiology.

[35]  B. Aggarwal,et al.  Nonsteroidal anti-inflammatory agents differ in their ability to suppress NF-kappaB activation, inhibition of expression of cyclooxygenase-2 and cyclin D1, and abrogation of tumor cell proliferation. , 2004, Oncogene.

[36]  J. Testa,et al.  Recurrent lymphangiomyomatosis after transplantation: genetic analyses reveal a metastatic mechanism. , 2003, American journal of respiratory and critical care medicine.

[37]  A. Hodges,et al.  Tuberous sclerosis complex tumor suppressor–mediated S6 kinase inhibition by phosphatidylinositide-3-OH kinase is mTOR independent , 2002, The Journal of cell biology.

[38]  Caroline Joyce,et al.  Quantitative RT-PCR. A review of current methodologies. , 2002, Methods in molecular biology.

[39]  G. FitzGerald,et al.  The coxibs, selective inhibitors of cyclooxygenase-2. , 2001, The New England journal of medicine.

[40]  D. Kwiatkowski,et al.  Mutational analysis in a cohort of 224 tuberous sclerosis patients indicates increased severity of TSC2, compared with TSC1, disease in multiple organs. , 2001, American journal of human genetics.

[41]  S A Rich,et al.  The coxibs, selective inhibitors of cyclooxygenase-2. , 2001, The New England journal of medicine.

[42]  E. Henske,et al.  The spectrum of mutations in TSC1 and TSC2 in women with tuberous sclerosis and lymphangiomyomatosis. , 2001, American journal of respiratory and critical care medicine.

[43]  T. Hartman,et al.  High frequency of pulmonary lymphangioleiomyomatosis in women with tuberous sclerosis complex. , 2000, Mayo Clinic proceedings.

[44]  E. Henske,et al.  Mutational analysis of the tuberous sclerosis geneTSC2 in patients with pulmonary lymphangioleiomyomatosis , 2000, Journal of medical genetics.

[45]  H. Onda,et al.  Tsc2(+/-) mice develop tumors in multiple sites that express gelsolin and are influenced by genetic background. , 1999, The Journal of clinical investigation.

[46]  E. Henske,et al.  Hamartin, the product of the tuberous sclerosis 1 (TSC1) gene, interacts with tuberin and appears to be localized to cytoplasmic vesicles. , 1998, Cancer research.

[47]  C. Walker,et al.  Rodent model of reproductive tract leiomyomata: characterization and use in preclinical therapeutic studies. , 1997, Progress in clinical and biological research.

[48]  M. H. Lee,et al.  Aspirin-Triggered Lipoxins (15-epi-LX) Are Generated by the Human Lung Adenocarcinoma Cell Line (A549)–Neutrophil Interactions and Are Potent Inhibitors of Cell Proliferation , 1996, Molecular medicine.

[49]  C. Walker,et al.  Estrogen stimulation and tamoxifen inhibition of leiomyoma cell growth in vitro and in vivo. , 1995, Endocrinology.

[50]  T. Goldsworthy,et al.  Rodent model of reproductive tract leiomyomata. Establishment and characterization of tumor-derived cell lines. , 1995, The American journal of pathology.