Predicting Spatio-temporal Time Series Using Dimension Reduced Local States

We present a method for both cross-estimation and iterated time series prediction of spatio-temporal dynamics based on local modelling and dimension reduction techniques. Assuming homogeneity of the underlying dynamics, we construct delay coordinates of local states and then further reduce their dimensionality through Principle Component Analysis. The prediction uses nearest neighbour methods in the space of dimension reduced states to either cross-estimate or iteratively predict the future of a given frame. The effectiveness of this approach is shown for (noisy) data from a (cubic) Barkley model, the Bueno-Orovio–Cherry–Fenton model, and the Kuramoto–Sivashinsky model.

[1]  Alan Edelman,et al.  Julia: A Fresh Approach to Numerical Computing , 2014, SIAM Rev..

[2]  G. Sivashinsky Nonlinear analysis of hydrodynamic instability in laminar flames—I. Derivation of basic equations , 1977 .

[3]  J. D. Farmer,et al.  Nonlinear modeling of chaotic time series: Theory and applications , 1990 .

[4]  Carroll,et al.  Predicting physical variables in time-delay embedding. , 1994, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[5]  Lloyd N. Trefethen,et al.  Fourth-Order Time-Stepping for Stiff PDEs , 2005, SIAM J. Sci. Comput..

[6]  Ulrich Parlitz,et al.  Nonlinear Time-Series Analysis , 1998 .

[7]  Jaideep Pathak,et al.  Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach. , 2018, Physical review letters.

[8]  D. Noble,et al.  A model for human ventricular tissue. , 2004, American journal of physiology. Heart and circulatory physiology.

[9]  Holger Kantz,et al.  Data-driven prediction and prevention of extreme events in a spatially extended excitable system. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[10]  Parlitz,et al.  Prediction of spatiotemporal time series based on reconstructed local states , 2000, Physical review letters.

[11]  Farmer,et al.  Predicting chaotic time series. , 1987, Physical review letters.

[12]  Igor Grabec,et al.  Nonparametric Statistical Modeling of Spatiotemporal Dynamics Based on recorded Data , 2004, Int. J. Bifurc. Chaos.

[13]  O. Lingjærde,et al.  Regularized local linear prediction of chaotic time series , 1998 .

[14]  G. Sivashinsky On Flame Propagation Under Conditions of Stoichiometry , 1980 .

[15]  G. P. King,et al.  Extracting qualitative dynamics from experimental data , 1986 .

[16]  Thomas Lilienkamp,et al.  Features of Chaotic Transients in Excitable Media Governed by Spiral and Scroll Waves. , 2017, Physical review letters.

[17]  Yoshiki Kuramoto,et al.  Diffusion-Induced Chaos in Reaction Systems , 1978 .

[18]  Elizabeth Bradley,et al.  Nonlinear time-series analysis revisited. , 2015, Chaos.

[19]  Henry D. I. Abarbanel,et al.  Analysis of Observed Chaotic Data , 1995 .

[20]  Qing Nie,et al.  DifferentialEquations.jl – A Performant and Feature-Rich Ecosystem for Solving Differential Equations in Julia , 2017, Journal of Open Research Software.

[21]  Ulrich Parlitz,et al.  Observing spatio-temporal dynamics of excitable media using reservoir computing. , 2018, Chaos.

[22]  Ulrich Parlitz,et al.  Local and Cluster Weighted Modeling for Time Series Prediction , 2006 .

[23]  Trevor Hastie,et al.  An Introduction to Statistical Learning , 2013, Springer Texts in Statistics.

[24]  Igor Grabec,et al.  Statistical Approach to Modeling of Spatiotemporal Dynamics , 2001, Int. J. Bifurc. Chaos.

[25]  Petros Koumoutsakos,et al.  Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks , 2018, Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[26]  Johan A. K. Suykens,et al.  Time Series Prediction Competition , 1999 .

[27]  Jon Louis Bentley,et al.  Multidimensional binary search trees used for associative searching , 1975, CACM.

[28]  H. Kantz,et al.  Nonlinear time series analysis , 1997 .

[29]  F. Takens Detecting strange attractors in turbulence , 1981 .

[30]  Stephen A. Billings,et al.  State-Space Reconstruction and Spatio-Temporal Prediction of Lattice Dynamical Systems , 2007, IEEE Transactions on Automatic Control.

[31]  F. Fenton,et al.  Minimal model for human ventricular action potentials in tissue. , 2008, Journal of theoretical biology.

[32]  D. Barkley A model for fast computer simulation of waves in excitable media , 1991 .

[33]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[34]  Stephen A. Billings,et al.  Identification of coupled map lattice models of complex spatio-temporal patterns , 2001 .

[35]  R. Brockett,et al.  Reservoir observers: Model-free inference of unmeasured variables in chaotic systems. , 2017, Chaos.

[36]  Johan A. K. Suykens,et al.  WINNING ENTRY OF THE K. U. LEUVEN TIME-SERIES PREDICTION COMPETITION , 1999 .

[37]  Andrew W. Moore,et al.  Locally Weighted Learning , 1997, Artificial Intelligence Review.