Computational methods for protein function analysis.

[1]  S. B. Needleman,et al.  A general method applicable to the search for similarities in the amino acid sequence of two proteins. , 1970, Journal of molecular biology.

[2]  M S Waterman,et al.  Identification of common molecular subsequences. , 1981, Journal of molecular biology.

[3]  S. Fields,et al.  A novel genetic system to detect protein–protein interactions , 1989, Nature.

[4]  S. Henikoff,et al.  Amino acid substitution matrices from protein blocks. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[5]  S. P. Fodor,et al.  Multiplexed biochemical assays with biological chips , 1993, Nature.

[6]  S A Benner,et al.  Analysis of amino acid substitution during divergent evolution: the 400 by 400 dipeptide substitution matrix. , 1994, Biochemical and biophysical research communications.

[7]  D. Haussler,et al.  Hidden Markov models in computational biology. Applications to protein modeling. , 1993, Journal of molecular biology.

[8]  J. Thompson,et al.  CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. , 1994, Nucleic acids research.

[9]  Ronald W. Davis,et al.  Quantitative Monitoring of Gene Expression Patterns with a Complementary DNA Microarray , 1995, Science.

[10]  Charles Elkan,et al.  The Value of Prior Knowledge in Discovering Motifs with MEME , 1995, ISMB.

[11]  Takahashi,et al.  E-CELL: Software Environment for Whole Cell Simulation. , 1997, Genome informatics. Workshop on Genome Informatics.

[12]  Gapped BLAST and PSI-BLAST: A new , 1997 .

[13]  Amos Bairoch,et al.  The PROSITE database, its status in 1997 , 1997, Nucleic Acids Res..

[14]  C. Chothia,et al.  Intermediate sequences increase the detection of homology between sequences. , 1997, Journal of molecular biology.

[15]  D. Lipman,et al.  A genomic perspective on protein families. , 1997, Science.

[16]  A. Valencia,et al.  Conserved Clusters of Functionally Related Genes in Two Bacterial Genomes , 1997, Journal of Molecular Evolution.

[17]  Jun Zhu,et al.  Bayesian adaptive sequence alignment algorithms , 1998, Bioinform..

[18]  Michael Ruogu Zhang,et al.  Comprehensive identification of cell cycle-regulated genes of the yeast Saccharomyces cerevisiae by microarray hybridization. , 1998, Molecular biology of the cell.

[19]  J A Eisen,et al.  Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. , 1998, Genome research.

[20]  S. Michnick,et al.  Oligomerization domain-directed reassembly of active dihydrofolate reductase from rationally designed fragments. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[21]  D. Botstein,et al.  Cluster analysis and display of genome-wide expression patterns. , 1998, Proceedings of the National Academy of Sciences of the United States of America.

[22]  Mark Gerstein,et al.  Measurement of the effectiveness of transitive sequence comparison, through a third 'intermediate' sequence , 1998, Bioinform..

[23]  B. Snel,et al.  Conservation of gene order: a fingerprint of proteins that physically interact. , 1998, Trends in biochemical sciences.

[24]  J. Claverie,et al.  Large-scale statistical analyses of rice ESTs reveal correlated patterns of gene expression. , 1999, Genome research.

[25]  D. Eisenberg,et al.  Detecting protein function and protein-protein interactions from genome sequences. , 1999, Science.

[26]  R. Overbeek,et al.  The use of gene clusters to infer functional coupling. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[27]  P. Brown,et al.  Exploring drug-induced alterations in gene expression in Mycobacterium tuberculosis by microarray hybridization. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[28]  D. Eisenberg,et al.  A combined algorithm for genome-wide prediction of protein function , 1999, Nature.

[29]  Masaru Tomita,et al.  E-CELL: software environment for whole-cell simulation , 1999, Bioinform..

[30]  D. Eisenberg,et al.  Assigning protein functions by comparative genome analysis: protein phylogenetic profiles. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[31]  E. Sprinzak,et al.  Prediction of gene function by genome-scale expression analysis: prostate cancer-associated genes. , 1999, Genome research.

[32]  Anton J. Enright,et al.  Protein interaction maps for complete genomes based on gene fusion events , 1999, Nature.

[33]  Jérôme Gouzy,et al.  ProDom and ProDom-CG: tools for protein domain analysis and whole genome comparisons , 2000, Nucleic Acids Res..

[34]  James R. Knight,et al.  A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae , 2000, Nature.

[35]  B. Palsson,et al.  The Escherichia coli MG1655 in silico metabolic genotype: its definition, characteristics, and capabilities. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[36]  Yudong D. He,et al.  Functional Discovery via a Compendium of Expression Profiles , 2000, Cell.

[37]  R. Overbeek,et al.  Functional analysis of gapped microbial genomes: amino acid metabolism of Thiobacillus ferrooxidans. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Julio Collado-Vides,et al.  RegulonDB (version 3.0): transcriptional regulation and operon organization in Escherichia coli K-12 , 2000, Nucleic Acids Res..

[39]  Michael Y. Galperin,et al.  The COG database: a tool for genome-scale analysis of protein functions and evolution , 2000, Nucleic Acids Res..

[40]  Warren C. Lathe,et al.  Predicting protein function by genomic context: quantitative evaluation and qualitative inferences. , 2000, Genome research.

[41]  Michal Linial,et al.  Using Bayesian Networks to Analyze Expression Data , 2000, J. Comput. Biol..

[42]  B. Schwikowski,et al.  A network of protein–protein interactions in yeast , 2000, Nature Biotechnology.

[43]  D. Eisenberg,et al.  Protein function in the post-genomic era , 2000, Nature.

[44]  G. Odell,et al.  The segment polarity network is a robust developmental module , 2000, Nature.

[45]  M. Ashburner,et al.  Gene Ontology: tool for the unification of biology , 2000, Nature Genetics.

[46]  W. Grundy,et al.  Combining Microarray Expression Data and Phylogenetic Profiles to Learn Gene Functional Categories Using Support Vector Machines , 2000, RECOMB 2000.

[47]  P. Brown,et al.  New components of a system for phosphate accumulation and polyphosphate metabolism in Saccharomyces cerevisiae revealed by genomic expression analysis. , 2000, Molecular biology of the cell.

[48]  G. Church,et al.  Computational identification of cis-regulatory elements associated with groups of functionally related genes in Saccharomyces cerevisiae. , 2000, Journal of molecular biology.

[49]  Sarah A. Teichmann,et al.  Computing protein function , 2000, Nature Biotechnology.

[50]  F. Cohen,et al.  Co-evolution of proteins with their interaction partners. , 2000, Journal of molecular biology.

[51]  Anton J. Enright,et al.  GeneRAGE: a robust algorithm for sequence clustering and domain detection , 2000, Bioinform..

[52]  L. Aravind Guilt by association: contextual information in genome analysis. , 2000, Genome research.

[53]  Rithy K. Roth,et al.  Gene expression analysis by massively parallel signature sequencing (MPSS) on microbead arrays , 2000, Nature Biotechnology.

[54]  Michael Y. Galperin,et al.  Who's your neighbor? New computational approaches for functional genomics , 2000, Nature Biotechnology.

[55]  C. Chothia,et al.  Assignment of homology to genome sequences using a library of hidden Markov models that represent all proteins of known structure. , 2001, Journal of molecular biology.

[56]  H. Bussemaker,et al.  Regulatory element detection using correlation with expression , 2001, Nature Genetics.

[57]  M. Pellegrini,et al.  Computational method to assign microbial genes to pathways , 2001, Journal of cellular biochemistry. Supplement.

[58]  T. Takagi,et al.  Assessment of prediction accuracy of protein function from protein–protein interaction data , 2001, Yeast.

[59]  S. Salzberg,et al.  Prediction of operons in microbial genomes. , 2001, Nucleic acids research.

[60]  Julio Collado-Vides,et al.  RegulonDB (version 3.2): transcriptional regulation and operon organization in Escherichia coli K-12 , 2001, Nucleic Acids Res..

[61]  Gary D Bader,et al.  BIND--The Biomolecular Interaction Network Database. , 2001, Nucleic acids research.

[62]  Yudong D. He,et al.  Expression profiling using microarrays fabricated by an ink-jet oligonucleotide synthesizer , 2001, Nature Biotechnology.

[63]  M. Gerstein,et al.  Global Analysis of Protein Activities Using Proteome Chips , 2001, Science.

[64]  Todd,et al.  Diffuse large B-cell lymphoma outcome prediction by gene-expression profiling and supervised machine learning , 2002, Nature Medicine.

[65]  E. Marcotte,et al.  Predicting functional linkages from gene fusions with confidence. , 2002, Applied bioinformatics.

[66]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[67]  Ioannis Xenarios,et al.  DIP, the Database of Interacting Proteins: a research tool for studying cellular networks of protein interactions , 2002, Nucleic Acids Res..

[68]  Ji Huang,et al.  [Serial analysis of gene expression]. , 2002, Yi chuan = Hereditas.

[69]  P. Bork,et al.  Functional organization of the yeast proteome by systematic analysis of protein complexes , 2002, Nature.

[70]  Peer Bork,et al.  Recent improvements to the SMART domain-based sequence annotation resource , 2002, Nucleic Acids Res..

[71]  E. Gilles,et al.  Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors , 2002, Nature Biotechnology.

[72]  Chern-Sing Goh,et al.  Co-evolutionary analysis reveals insights into protein-protein interactions. , 2002, Journal of molecular biology.

[73]  Charles DeLisi,et al.  Predictome: a database of putative functional links between proteins , 2002, Nucleic Acids Res..

[74]  Owen White,et al.  The TIGRFAMs database of protein families , 2003, Nucleic Acids Res..

[75]  Cathy H. Wu,et al.  Protein family classification and functional annotation , 2003, Comput. Biol. Chem..

[76]  Arun K. Ramani,et al.  Exploiting the co-evolution of interacting proteins to discover interaction specificity. , 2003, Journal of molecular biology.

[77]  Terri K. Attwood,et al.  PRINTS and its automatic supplement, prePRINTS , 2003, Nucleic Acids Res..

[78]  Edward M Marcotte,et al.  Discovery of uncharacterized cellular systems by genome-wide analysis of functional linkages , 2003, Nature Biotechnology.

[79]  Alessandro Vespignani,et al.  Global protein function prediction from protein-protein interaction networks , 2003, Nature Biotechnology.

[80]  Alex Bateman,et al.  The InterPro Database, 2003 brings increased coverage and new features , 2003, Nucleic Acids Res..

[81]  Simon Kasif,et al.  Identification of functional links between genes using phylogenetic profiles , 2003, Bioinform..

[82]  Eric C. Rouchka,et al.  Gibbs Recursive Sampler: finding transcription factor binding sites , 2003, Nucleic Acids Res..

[83]  Christian von Mering,et al.  STRING: a database of predicted functional associations between proteins , 2003, Nucleic Acids Res..