Online, automatic, near‐real time estimation of GPS‐TEC: IONOLAB‐TEC

[1] The variability of space weather can best be captured using total electron content (TEC), which corresponds to total number of electrons on a ray path. The dual-frequency ground based GPS receivers provide a cost-effective means for monitoring TEC. Computation of TEC for a single GPS station is a challenge due to various unknowns and ambiguities such as inter-frequency receiver bias and satellite bias, choice of mapping function, and peak height of ionosphere for ionospheric piercing point. In this study, IONOLAB group introduces a robust, automatic, online computation routine near-real time TEC, IONOLAB-TEC, for IGS and/or EUREF stations from www.ionolab.org. The user can choose online one station or multiple stations, date or dates for the computation. The IONOLAB-TEC values can be compared with TEC estimates from IGS analysis centers. The output can be obtained either in graphical form, or IONOLAB-TEC estimates can be provided in an excel file. The service is easy to use with a graphical user interface. This unique and original space weather application is provided online, and IONOLAB-TEC estimates are downloaded automatically to the user defined directories under user defined filenames.

[1]  F. Arikan,et al.  Statistical Characterization of the Ionosphere Using GPS Signals , 2005 .

[2]  Orhan Arikan,et al.  Regularized estimation of vertical total electron content from Global Positioning System data , 2003 .

[3]  O. Ugurlu,et al.  Web Based Automated Total Electron Content Computation , 2007, 2007 3rd International Conference on Recent Advances in Space Technologies.

[4]  Feza Arikan,et al.  Observed Ionospheric Effects of 23 October 2011 Van, Turkey Earthquake , 2012 .

[5]  Umut Sezen,et al.  A Novel Algorithm for Cycle Slip Detection and Repair , 2012 .

[6]  C. B. Erol,et al.  Regularized estimation of TEC from GPS data for certain midlatitude stations and comparison with the IRI model , 2007 .

[7]  Manuel Hernández-Pajares,et al.  The ionosphere: effects, GPS modeling and the benefits for space geodetic techniques , 2011 .

[8]  Feza Arikan,et al.  Regularized estimation of vertical total electron content from GPS data for a desired time period , 2004 .

[9]  N. Rao,et al.  Geomagnetic Storm Effects on GPS Aided Navigation over Low Latitude South Indian Region , 2010 .

[10]  Atila Yilmaz,et al.  Regional TEC mapping using neural networks , 2009 .

[11]  Qing Hu,et al.  Using IGS Data to Analyze the Long-Term Variations of Total Electron Content , 2010, 2010 2nd International Conference on Information Engineering and Computer Science.

[12]  Orhan Arikan,et al.  Investigation of total electron content variability due to seismic and geomagnetic disturbances in the ionosphere , 2010 .

[13]  Feza Arikan,et al.  Probability density function estimation for characterizing hourly variability of ionospheric total electron content , 2010 .

[14]  Orhan Arikan,et al.  Tomographic reconstruction of the ionospheric electron density as a function of space and time , 2009 .

[15]  Shuanggen Jin,et al.  GPS Ionospheric Mapping and Tomography: A case of study in a geomagnetic storm , 2011, 2011 IEEE International Geoscience and Remote Sensing Symposium.

[16]  Tatsuoki Takeda,et al.  Development of ionospheric tomography using neural network and its application to the 2007 Southern Sumatra earthquake , 2012 .

[17]  Adrian N. Evans,et al.  An Evaluation of Interpolation Techniques for Reconstructing Ionospheric TEC Maps , 2008, IEEE Transactions on Geoscience and Remote Sensing.

[18]  Feza Arikan,et al.  Optimum temporal update periods for regional ionosphere monitoring , 2010 .

[19]  Aaron J. Ridley,et al.  A global model: Empirical orthogonal function analysis of total electron content 1999–2009 data , 2012 .

[20]  Anthea J. Coster,et al.  Real‐Time Ionospheric Monitoring System Using GPS , 1991 .

[21]  Orhan Arikan,et al.  Total Electron Content Estimation with Reg‐Est , 2007 .

[22]  Orhan Arikan,et al.  Estimation of single station interfrequency receiver bias using GPS‐TEC , 2008 .

[23]  N. S. Mozhaeva,et al.  Features of short wave propagation in winter conditions , 2011, Proceedings of the 5th European Conference on Antennas and Propagation (EUCAP).

[24]  Peter Steigenberger,et al.  Reprocessing of a global GPS network , 2006 .

[25]  E. R. Ackermann,et al.  Nonlinear dynamic systems modeling using Gaussian processes: Predicting ionospheric total electron content over South Africa , 2011 .

[26]  Xiaoqing Pi,et al.  COSMIC GPS Ionospheric Sensing and Space Weather , 2000 .

[27]  Attila Komjathy,et al.  Global ionospheric total electron content mapping using the global positioning system , 1997 .

[28]  H. W. Kroehl,et al.  What is a geomagnetic storm , 1994 .

[29]  Christos Pikridas,et al.  Total electron content variations over southern Europe before and during the M 6.3 Abruzzo earthquake of April 6, 2009 , 2012 .