Worms from the Arctic are better adapted to freezing and high salinity than worms from temperate regions: oxidative stress responses in Enchytraeus albidus.

[1]  A. Reinecke,et al.  Differences in ionic properties of salts affect saline toxicity to the earthworm Eisenia fetida , 2014 .

[2]  J. G. Sørensen,et al.  Roles of carbohydrate reserves for local adaptation to low temperatures in the freeze tolerant oligochaete Enchytraeus albidus , 2014, Journal of Comparative Physiology B.

[3]  M. Amorim,et al.  Soil salinity increases survival of freezing in the enchytraeid Enchytraeus albidus , 2013, Journal of Experimental Biology.

[4]  L. Guimarães,et al.  Effects of salinity stress on neurotransmission, energy metabolism, and anti-oxidant biomarkers of Carcinus maenas from two estuaries of the NW Iberian Peninsula , 2012 .

[5]  Susana I. L. Gomes,et al.  Effect of Cu-nanoparticles versus one Cu-salt: Analysis of stress biomarkers response in Enchytraeus albidus (Oligochaeta) , 2012, Nanotoxicology.

[6]  S. Novais From genes to population: effects of toxicants on Enchytraeus albidus , 2011 .

[7]  Susana I. L. Gomes,et al.  Reproduction and biochemical responses in Enchytraeus albidus (Oligochaeta) to zinc or cadmium exposures. , 2011, Environmental pollution.

[8]  K. Storey,et al.  Low Temperature Biology of Insects: Oxygen: Stress and adaptation in cold-hardy insects , 2010 .

[9]  M. Amorim,et al.  Effects of natural and chemical stressors on Enchytraeus albidus: can oxidative stress parameters be used as fast screening tools for the assessment of different stress impacts in soils? , 2009, Environment international.

[10]  N. Nielsen,et al.  Freeze tolerance and accumulation of cryoprotectants in the enchytraeid Enchytraeus albidus (Oligochaeta) from Greenland and Europe. , 2008, Cryobiology.

[11]  S. Souissi,et al.  Effects of salinity and temperature on the expression of enzymatic biomarkers in Eurytemora affinis (Calanoida, Copepoda). , 2007, Comparative biochemistry and physiology. Part A, Molecular & integrative physiology.

[12]  M. Peck,et al.  Biomarker responses of the estuarine brown shrimp Crangon crangon L. to non-toxic stressors: Temperature, salinity and handling stress effects , 2006 .

[13]  O. Giere Ecology and biology of marine oligochaeta — an inventory rather than another review , 2006 .

[14]  B. Christensen,et al.  Invasion of terrestrial enchytraeids into two postglacial tundras: North-eastern Greenland and the Arctic Archipelago of Canada (Enchytraeidae, Oligochaeta) , 2006, Polar Biology.

[15]  Simone Pfeifer,et al.  Effect of temperature and salinity on acetylcholinesterase activity, a common pollution biomarker, in Mytilus sp. from the south-western Baltic Sea , 2005 .

[16]  J. Römbke,et al.  Identification of the ecological requirements of important terrestrial ecotoxicological test species , 2005 .

[17]  M. Hermes-Lima Oxygen in Biology and Biochemistry: Role of Free Radicals , 2005 .

[18]  K. Storey,et al.  Physiology, Biochemistry, and Molecular Biology of Vertebrate Freeze Tolerance: The Wood Frog , 2004 .

[19]  P. Scaps,et al.  Acetylcholinesterase activity of the polychaete Nereis diversicolor: effects of temperature and salinity. , 2000, Comparative biochemistry and physiology. Toxicology & pharmacology : CBP.

[20]  J. Chaudière,et al.  Intracellular antioxidants: from chemical to biochemical mechanisms. , 1999, Food and chemical toxicology : an international journal published for the British Industrial Biological Research Association.

[21]  A. Turk,et al.  Secondary poisoning in the common shrew (Sorex araneus) fed earthworms exposed to an organophosphate pesticide , 1999 .

[22]  K. Storey,et al.  Antioxidant defenses and metabolic depression. The hypothesis of preparation for oxidative stress in land snails. , 1998, Comparative biochemistry and physiology. Part B, Biochemistry & molecular biology.

[23]  K. Storey Oxidative stress: animal adaptations in nature. , 1996, Brazilian journal of medical and biological research = Revista brasileira de pesquisas medicas e biologicas.

[24]  K. Storey,et al.  Oxidative damage and antioxidants in Rana sylvatica, the freeze-tolerant wood frog. , 1996, The American journal of physiology.

[25]  Joanisse,et al.  Oxidative stress and antioxidants in overwintering larvae of cold-hardy goldenrod gall insects , 1996, The Journal of experimental biology.

[26]  A. Carvalho,et al.  Inhibition of acetylcholinesterase activity as effect criterion in acute tests with juvenile Daphnia magna. , 1996, Chemosphere.

[27]  G. Cerniglia,et al.  Microtiter plate assay for the measurement of glutathione and glutathione disulfide in large numbers of biological samples. , 1990, Analytical biochemistry.

[28]  M. Zachary,et al.  Glutathione peroxidase, superoxide dismutase, and catalase inactivation by peroxides and oxygen derived free radicals , 1990, Mechanisms of Ageing and Development.

[29]  J. Leeder,et al.  Use of a microplate reader in an assay of glutathione reductase using 5,5'-dithiobis(2-nitrobenzoic acid). , 1989, Analytical biochemistry.

[30]  G. Duggin,et al.  Differential distribution of glutathione and glutathione-related enzymes in rabbit kidney. Possible implications in analgesic nephropathy. , 1984, Biochemical pharmacology.

[31]  R. Bird,et al.  Comparative studies on different methods of malonaldehyde determination. , 1984, Methods in enzymology.

[32]  C. C. Reddy,et al.  Vitamin E dependent reduced glutathione inhibition of rat liver microsomal lipid peroxidation. , 1982, Life sciences.

[33]  I. Fridovich,et al.  Superoxide radical inhibits catalase. , 1982, The Journal of biological chemistry.

[34]  O. Griffith,et al.  Determination of glutathione and glutathione disulfide using glutathione reductase and 2-vinylpyridine. , 1980, Analytical biochemistry.

[35]  K. Yagi,et al.  Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. , 1979, Analytical biochemistry.

[36]  C. N. Giannopolitis,et al.  Superoxide dismutases: I. Occurrence in higher plants. , 1977, Plant physiology.

[37]  M. M. Bradford A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. , 1976, Analytical biochemistry.

[38]  W B Jakoby,et al.  Glutathione S-transferases. The first enzymatic step in mercapturic acid formation. , 1974, The Journal of biological chemistry.

[39]  I. Fridovich,et al.  Superoxide dismutase. An enzymic function for erythrocuprein (hemocuprein). , 1969, The Journal of biological chemistry.

[40]  F. Tietze Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. , 1969, Analytical biochemistry.

[41]  K. Courtney,et al.  A new and rapid colorimetric determination of acetylcholinesterase activity. , 1961, Biochemical pharmacology.