Consistent abstractions of affine control systems

In this paper, we consider the problem of constructing abstractions of affine control systems that preserve reachability properties, and, in particular, local accessibility. In this framework, showing local accessibility of the higher level, abstracted model is equivalent to showing local accessibility of the, more detailed, lower level model. Given an affine control system and a smooth surjective map, we present a canonical construction for extracting an affine control system describing the trajectories of the abstracted variables. We then obtain conditions on the abstraction maps that render the original and abstracted system equivalent from a local accessibility point of view. Such consistent hierarchies of accessibility preserving abstractions of nonlinear control systems are then considered for various classes of affine control systems including linear, bilinear, drift free, and strict feedback systems.

[1]  P. Caines,et al.  The hierarchical lattices of a finite machine , 1995 .

[2]  S. Shankar Sastry,et al.  Towards Continuous Abstractions of Dynamical and Control Systems , 1996, Hybrid Systems.

[3]  B. Krogh,et al.  Synthesis of supervisory controllers for hybrid systems based on approximating automata , 1998, IEEE Trans. Autom. Control..

[4]  Thomas Brihaye,et al.  On O-Minimal Hybrid Systems , 2004, HSCC.

[5]  Srdjan S. Stankovic,et al.  Contractibility of overlapping decentralized control , 2001, Syst. Control. Lett..

[6]  Athanasios C. Antoulas,et al.  Approximation of Linear Dynamical Systems , 1998 .

[7]  Panos J. Antsaklis,et al.  Hybrid System Modeling and Autonomous Control Systems , 1992, Hybrid Systems.

[8]  Patrick Cousot,et al.  Systematic design of program analysis frameworks , 1979, POPL.

[9]  George J. Pappas,et al.  Hierarchies of stabilizability preserving linear systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[10]  Jean-Paul Laumond,et al.  Topological property for collision-free nonholonomic motion planning: the case of sinusoidal inputs for chained form systems , 1998, IEEE Trans. Robotics Autom..

[11]  C. P. Kwong,et al.  Optimal chained aggregation for reduced-order modeling† , 1982 .

[12]  P. Dooren The generalized eigenstructure problem in linear system theory , 1981 .

[13]  W. M. Wonham,et al.  On the consistency of hierarchical supervision in discrete-event systems , 1990 .

[14]  Miroslav Krstic,et al.  Nonlinear and adaptive control de-sign , 1995 .

[15]  George J. Pappas,et al.  Discrete abstractions of hybrid systems , 2000, Proceedings of the IEEE.

[16]  A. C. Antoulas,et al.  Linear Dynamical Systems, Approximation , 1999 .

[17]  Jörg Raisch,et al.  Discrete approximation and supervisory control of continuous systems , 1998, IEEE Trans. Autom. Control..

[18]  Paulo Tabuada,et al.  Abstractions of Hamiltonian control systems , 2003, Autom..

[19]  Joseph Sifakis,et al.  Property preserving abstractions for the verification of concurrent systems , 1995, Formal Methods Syst. Des..

[20]  Y. Saad Projection and deflation method for partial pole assignment in linear state feedback , 1988 .

[21]  P. Caines,et al.  Hierarchical hybrid control systems: a lattice theoretic formulation , 1998, IEEE Trans. Autom. Control..

[22]  M. Aoki Control of large-scale dynamic systems by aggregation , 1968 .

[23]  Walter Murray Wonham,et al.  Hierarchical control of timed discrete-event systems , 1996, Discret. Event Dyn. Syst..

[25]  Arjan van der Schaft,et al.  Non-linear dynamical control systems , 1990 .

[26]  Walter Murray Wonham,et al.  Hierarchical control of discrete-event systems , 1996, Discret. Event Dyn. Syst..

[27]  George J. Pappas,et al.  Consistent hierarchies of nonlinear abstractions , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[28]  S. Shankar Sastry,et al.  Hierarchically consistent control systems , 2000, IEEE Trans. Autom. Control..

[29]  Robin Milner,et al.  Communication and concurrency , 1989, PHI Series in computer science.