Globally Optimal Multisensor Distributed Random Parameter Matrices Kalman Filtering Fusion with Applications

This paper proposes a new distributed Kalman filtering fusion with random state transition and measurement matrices, i.e., random parameter matrices Kalman filtering. It is proved that under a mild condition the fused state estimate is equivalent to the centralized Kalman filtering using all sensor measurements; therefore, it achieves the best performance. More importantly, this result can be applied to Kalman filtering with uncertain observations including the measurement with a false alarm probability as a special case, as well as, randomly variant dynamic systems with multiple models. Numerical examples are given which support our analysis and show significant performance loss of ignoring the randomness of the parameter matrices.

[1]  Sumit Roy,et al.  Decentralized structures for parallel Kalman filtering , 1988 .

[2]  S. Haykin,et al.  Adaptive Filter Theory , 1986 .

[3]  Yakov Bar-Shalom,et al.  Multitarget-Multisensor Tracking: Principles and Techniques , 1995 .

[4]  Stelios C. A. Thomopoulos,et al.  Distributed Fusion Architectures and Algorithms for Target Tracking , 1997, Proc. IEEE.

[5]  Donald M. Wiberg,et al.  Dynamic system identification: Experiment design and data analysis , 1983 .

[6]  Yunmin Zhu,et al.  Applications of Random Parameter Matrices Kalman Filtering in Uncertain Observation and Multi-Model Systems , 2006, ArXiv.

[7]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[8]  A. Goldsmith,et al.  Kalman filtering with partial observation losses , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[9]  Kai-Yuan Cai,et al.  Multisensor Decision And Estimation Fusion , 2003, The International Series on Asian Studies in Computer and Information Science.

[10]  Nasser E. Nahi,et al.  Optimal recursive estimation with uncertain observation , 1969, IEEE Trans. Inf. Theory.

[11]  Willem L. De Koning,et al.  Optimal estimation of linear discrete-time systems with stochastic parameters , 1984, at - Automatisierungstechnik.

[12]  Yunmin Zhu,et al.  Optimal Kalman filtering fusion with cross-correlated sensor noises , 2007, Autom..

[13]  H. F. Durrant-Whyte,et al.  Fully decentralised algorithm for multisensor Kalman filtering , 1991 .

[14]  S. Mori,et al.  Distributed Tracking in Distributed Sensor Networks , 1986, 1986 American Control Conference.

[15]  Bruno Sinopoli,et al.  Kalman filtering with intermittent observations , 2004, IEEE Transactions on Automatic Control.

[16]  Yaakov Bar-Shalom,et al.  Multitarget-multisensor tracking: Advanced applications , 1989 .