Multiscale modelling of the thermoelastic properties of alumina-zirconia ceramics for 3D printing

[1]  S. Olhero,et al.  Conventional versus additive manufacturing in the structural performance of dense alumina-zirconia ceramics: 20 years of research, challenges and future perspectives , 2022, Journal of Manufacturing Processes.

[2]  S. Patel Thermomechanical Analysis of Ceramic Composites Using Object Oriented Finite Element Analysis , 2021, Finite Element Method - Recent Advances and Applications [Working Title].

[3]  J. Tomaszewska,et al.  Zirconia–Alumina Composites Obtained by Centrifugal Slip Casting as Attractive Sustainable Material for Application in Construction , 2021, Materials.

[4]  N. Ukrainczyk,et al.  Evaluation of Sulfuric Acid-Induced Degradation of Potassium Silicate Activated Metakaolin Geopolymers by Semi-Quantitative SEM-EDX Analysis , 2020, Materials.

[5]  J. Zou,et al.  Sintering highly dense ultra-high temperature ceramics with suppressed grain growth , 2020 .

[6]  Xiaodong Liu,et al.  Partially stabilized zirconia moulds fabricated by stereolithographic additive manufacturing via digital light processing , 2020 .

[7]  Guangyong Sun,et al.  Effect of different implant configurations on biomechanical behavior of full-arch implant-supported mandibular monolithic zirconia fixed prostheses. , 2019, Journal of the mechanical behavior of biomedical materials.

[8]  G. Malucelli,et al.  The role of alumina-zirconia loading on the mechanical and biological properties of UHMWPE for biomedical applications , 2019, Composites Part B: Engineering.

[9]  Haidong Wu,et al.  A strategy for defects healing in 3D printed ceramic compact via cold isostatic pressing: Sintering kinetic window and microstructure evolution , 2019, Journal of the American Ceramic Society.

[10]  M. Leu,et al.  Characterization of zirconia specimens fabricated by ceramic on-demand extrusion , 2018, Ceramics International.

[11]  S. Ubenthiran,et al.  Effect of Air and Argon Sintering Atmospheres on Properties and Hydrothermal Aging Resistance of Y-TZP Ceramics , 2018, Journal of Materials Engineering and Performance.

[12]  H. Baharvandi,et al.  Effects of additive amount, testing method, fabrication process and sintering temperature on the mechanical properties of Al2O3/3Y-TZP composites , 2017 .

[13]  G. Montavon,et al.  Application of FEM to Estimate Thermo-Mechanical Properties of Plasma Sprayed Composite Coatings , 2017 .

[14]  M. Leu,et al.  Additive manufacturing and mechanical characterization of high density fully stabilized zirconia , 2017 .

[15]  M. Leu,et al.  Mechanical characterization of parts produced by ceramic on-demand extrusion process , 2017 .

[16]  M. Lombardi,et al.  Issues in Nanocomposite Ceramic Engineering: Focus on Processing and Properties of Alumina-based Composites , 2014, Journal of applied biomaterials & functional materials.

[17]  J. Chevalier,et al.  Elaboration of Alumina-Zirconia Composites: Role of the Zirconia Content on the Microstructure and Mechanical Properties , 2013, Materials.

[18]  C. Alcázar,et al.  Enhanced Hydrothermal Resistance of Y‐TZP Ceramics Through Colloidal Processing , 2013 .

[19]  W. Pabst,et al.  Elastic properties and damping behavior of alumina-zirconia composites at room temperature , 2012 .

[20]  W. Cho,et al.  Evaluation of mechanical reliability of zirconia-toughened alumina composites for dental implants , 2012 .

[21]  M. H. Bocanegra-Bernal,et al.  On the wide range of mechanical properties of ZTA and ATZ based dental ceramic composites by varying the Al2O3 and ZrO2 content , 2009 .

[22]  J. Pinho-da-Cruz,et al.  Asymptotic homogenisation in linear elasticity. Part II: Finite element procedures and multiscale applications , 2009 .

[23]  J. Pinho-da-Cruz,et al.  Asymptotic homogenisation in linear elasticity. Part I: Mathematical formulation and finite element modelling , 2009 .

[24]  V. Coffman,et al.  Modelling Microstructures with OOF2 , 2009 .

[25]  C. Elias,et al.  Mechanical properties and cytotoxicity of 3Y-TZP bioceramics reinforced with Al2O3 particles , 2009 .

[26]  L. Gauckler,et al.  Advanced ceramics in wire bonding capillaries for semiconductor package technology , 2008 .

[27]  Rhonald C. Lua,et al.  Image-based finite element mesh construction for material microstructures , 2008 .

[28]  Peter S. Shaffer,et al.  Helping students develop an understanding of Archimedes' principle. II. Development of research-based instructional materials , 2003 .

[29]  A. V. Shevchenko,et al.  Functional Graded Materials Based on ZrO2 and Al2O3. Production Methods , 2003 .

[30]  Stephen A. Langer,et al.  OOF: an image-based finite-element analysis of material microstructures , 2001, Comput. Sci. Eng..

[31]  K. S. Ravichandran,et al.  Elastic Properties of Two‐Phase Composites , 1994 .

[32]  Robert W. Zimmerman,et al.  Hashin-Shtrikman bounds on the poisson ratio of a composite material , 1992 .

[33]  A. Fahmy,et al.  Thermal‐Expansion Behavior of Two‐Phase Solids , 1970 .

[34]  Richard Schapery Thermal Expansion Coefficients of Composite Materials Based on Energy Principles , 1968 .

[35]  S. Shtrikman,et al.  A variational approach to the theory of the elastic behaviour of multiphase materials , 1963 .

[36]  S. Shtrikman,et al.  A Variational Approach to the Theory of the Effective Magnetic Permeability of Multiphase Materials , 1962 .

[37]  E. H. Kerner The Elastic and Thermo-elastic Properties of Composite Media , 1956 .

[38]  Rolf Landauer,et al.  The Electrical Resistance of Binary Metallic Mixtures , 1952 .

[39]  L. Rayleigh,et al.  LVI. On the influence of obstacles arranged in rectangular order upon the properties of a medium , 1892 .

[40]  N. Mitrović,et al.  Analyzing strain in samples with all-ceramic systems using the digital image correlation technique , 2019, Srpski arhiv za celokupno lekarstvo.

[41]  R. Vaish,et al.  Microstructural Modeling of Ni-Al2O3 Composites Using Object-Oriented Finite-Element Method , 2014 .

[42]  A. Sanchez-Herencia,et al.  Threshold strength evaluation on an Al2O3–ZrO2 multilayered system , 2007 .

[43]  A. Sanchez-Herencia,et al.  Fracture behaviour of an Al2O3-ZrO2 multi-layered ceramic with residual stresses due to phase transformations , 2006 .

[44]  W. Pabst,et al.  Effective elastic properties of alumina-zirconia composite ceramics. Part 5. Tensile modulus of alumina-zirconia composite ceramics , 2005 .

[45]  W. Pabst,et al.  Effective elastic properties of alumina-zirconia composite ceramics. Part 4. Tensile modulus of porous alumina and zirconia , 2004 .

[46]  W. Pabst,et al.  Effective elastic properties of alumina-zirconia composite ceramics - Part 3. Calculation of elastic moduli of polycrystalline alumina and zirconia from monocrystal data , 2004 .

[47]  W. Pabst,et al.  EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 2. MICROMECHANICAL MODELING , 2004 .

[48]  W. Pabst,et al.  EFFECTIVE ELASTIC PROPERTIES OF ALUMINA-ZIRCONIA COMPOSITE CERAMICS - PART 1. RATIONAL CONTINUUM THEORY OF LINEAR ELASTICITY , 2003 .

[49]  D. Fang,et al.  On the effect of particle shape and orientation on elastic properties of metal matrix composites , 1997 .

[50]  A. Reuss,et al.  Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle . , 1929 .

[51]  W. Voigt Ueber die Beziehung zwischen den beiden Elasticitätsconstanten isotroper Körper , 1889 .

[52]  S. Thermal-Expansion Stresses in Reinforced Plastics 1 Thermal Expansion in Plastics , 2022 .