Stochastic symplectic methods based on the Padé approximations for linear stochastic Hamiltonian systems

In this article, we propose a kind of numerical methods based on the Pade approximations, for two kinds of stochastic Hamiltonian systems. For the general linear stochastic Hamiltonian systems, it is shown that the applied Pade approximations P ( k , k ) produce numerical solutions that are symplectic, and the proposed numerical schemes based on P ( r , s ) are of root-mean-square convergence order r + s 2 . For a special kind of linear stochastic Hamiltonian systems with additive noises, the numerical methods using two kinds of Pade approximations, P ( r ź , s ź ) and P ( r ź , 1 ) , possess root-mean-square convergence order r ź + 2 when r ź + s ź = r ź + 3 , and are symplectic if r ź = s ź . These generalize the Pade approximation approaches for symplectic integration of linear Hamiltonian systems to the stochastic context.

[1]  Abdallah A. Nahla,et al.  On pade′ approximations to the exponential function and application to the point kinetics equations , 2004 .

[2]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[3]  Jialin Hong,et al.  Modified equations for weakly convergent stochastic symplectic schemes via their generating functions , 2016 .

[4]  P. Kloeden,et al.  Numerical Solution of Stochastic Differential Equations , 1992 .

[5]  G. N. Milstein,et al.  Symplectic Integration of Hamiltonian Systems with Additive Noise , 2001, SIAM J. Numer. Anal..

[6]  G. Kallianpur Stochastic differential equations and diffusion processes , 1981 .

[7]  Mtw,et al.  Stochastic flows and stochastic differential equations , 1990 .

[8]  M. V. Tretyakov,et al.  Stochastic Numerics for Mathematical Physics , 2004, Scientific Computation.

[9]  X. Mao,et al.  Stochastic Differential Equations and Applications , 1998 .

[10]  H. Owhadi,et al.  Stochastic Variational Integrators , 2007, 0708.2187.

[11]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[12]  S. Mehler Stochastic Flows And Stochastic Differential Equations , 2016 .

[13]  F. Bai,et al.  DYNAMICS AND VARIATIONAL INTEGRATORS OF STOCHASTIC HAMILTONIAN SYSTEMS , 2009 .

[14]  L. Rogers Stochastic differential equations and diffusion processes: Nobuyuki Ikeda and Shinzo Watanabe North-Holland, Amsterdam, 1981, xiv + 464 pages, Dfl.175.00 , 1982 .

[15]  B. Øksendal Stochastic Differential Equations , 1985 .

[16]  Desmond J. Higham,et al.  Numerical simulation of a linear stochastic oscillator with additive noise , 2004 .

[17]  G. N. Milstein,et al.  Numerical Methods for Stochastic Systems Preserving Symplectic Structure , 2002, SIAM J. Numer. Anal..

[18]  Lijin Wang,et al.  Predictor-corrector methods for a linear stochastic oscillator with additive noise , 2007, Math. Comput. Model..

[19]  Yau Shu Wong,et al.  High-Order Symplectic Schemes for Stochastic Hamiltonian Systems , 2014 .

[20]  Kang Feng,et al.  Symplectic Difference Schemes for Hamiltonian Systems , 2010 .

[21]  Yau Shu Wong,et al.  Symplectic Numerical Schemes for Stochastic Systems Preserving Hamiltonian Functions , 2012, NAA.

[22]  M. Qin,et al.  Symplectic Geometric Algorithms for Hamiltonian Systems , 2010 .