Growing applications for bioassembled Förster resonance energy transfer cascades

Arranging multiple fluorophores into carefully designed assemblies allows them to engage in directed energy transfer cascades that can span significant portions of both the visible spectrum and nanoscale space. Combining these cascades with the 3-dimensional control of fluorophore placement provided by different types of biological templates, and especially DNA, may allow them to progress from an interesting research platform to enabling new applications. Here, we review the progress in creating such systems based on the diversity of available fluorophores and biological scaffolds. Preliminary work toward targeted applications ranging from optical utility in light harvesting, lasing, molecular computing, optical data storage and encryption to biosensing and photodynamic therapy are discussed. Finally, we provide a perspective on how this unique combination of photonically active biomaterials may transition to concerted applications.

[1]  Philip Tinnefeld,et al.  Single-molecule four-color FRET visualizes energy-transfer paths on DNA origami. , 2011, Journal of the American Chemical Society.

[2]  Igor L. Medintz,et al.  Use of biomolecular scaffolds for assembling multistep light harvesting and energy transfer devices , 2015 .

[3]  Zach DeVito,et al.  Opt , 2017 .

[4]  Richard P. Haugland,et al.  Quantitative Comparison of Long-wavelength Alexa Fluor Dyes to Cy Dyes: Fluorescence of the Dyes and Their Bioconjugates , 2003, The journal of histochemistry and cytochemistry : official journal of the Histochemistry Society.

[5]  P. Rothemund Folding DNA to create nanoscale shapes and patterns , 2006, Nature.

[6]  A fluorescence resonance energy transfer sensor based on maltose binding protein. , 2003 .

[7]  Chris Dwyer,et al.  Self-Assembled Resonance Energy Transfer Keys for Secure Communication over Classical Channels. , 2015, ACS nano.

[8]  Michael W. Davidson,et al.  The fluorescent protein palette: tools for cellular imaging. , 2009, Chemical Society reviews.

[9]  Petra Schwille,et al.  Triple FRET: a tool for studying long-range molecular interactions. , 2003, Chemphyschem : a European journal of chemical physics and physical chemistry.

[10]  Igor L. Medintz,et al.  Intracellular FRET-based probes: a review , 2015, Methods and applications in fluorescence.

[11]  Tayyaba Hasan,et al.  Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. , 2010, Chemical reviews.

[12]  J. Tanida,et al.  Fluorescence resonance energy transfer-based molecular logic circuit using a DNA scaffold , 2012 .

[13]  S. Quake,et al.  Nanometer-scale Fluorescence Resonance Optical Waveguides , 2004 .

[14]  Igor L. Medintz,et al.  Resonance Energy Transfer Between Luminescent Quantum Dots and Diverse Fluorescent Protein Acceptors. , 2009, The journal of physical chemistry. C, Nanomaterials and interfaces.

[15]  Igor L. Medintz,et al.  Quantum dots: a powerful tool for understanding the intricacies of nanoparticle-mediated drug delivery , 2009, Expert opinion on drug delivery.

[16]  P. Cochat,et al.  Et al , 2008, Archives de pediatrie : organe officiel de la Societe francaise de pediatrie.

[17]  James J. Russo,et al.  Combinatorial fluorescence energy transfer tags for multiplex biological assays , 2001, Nature Biotechnology.

[18]  Igor L. Medintz,et al.  Extending FRET cascades on linear DNA photonic wires. , 2014, Chemical communications.

[19]  A. Jonas,et al.  Ordered polyelectrolyte multilayers: unidirectional FRET cascade in nanocompartmentalized polyelectrolyte multilayers. , 2009, Chemphyschem : a European journal of chemical physics and physical chemistry.

[20]  Igor L. Medintz,et al.  Assembly of a concentric Förster resonance energy transfer relay on a quantum dot scaffold: characterization and application to multiplexed protease sensing. , 2012, ACS nano.

[21]  Igor L. Medintz,et al.  Energy-transfer cassette labeling for capillary array electrophoresis short tandem repeat DNA fragment sizing. , 2001, Bioconjugate chemistry.

[22]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[23]  M. Bayer Fluorescent Energy Transfer Nucleic Acid Probes Designs And Protocols , 2016 .

[24]  Michael S Livstone,et al.  Molecular computing revisited: a Moore's Law? , 2003, Trends in biotechnology.

[25]  F. Odobel,et al.  Bio-inspired artificial light-harvesting antennas for enhancement of solar energy capture in dye-sensitized solar cells , 2013 .

[26]  L. Stryer,et al.  Energy transfer: a spectroscopic ruler. , 1967, Proceedings of the National Academy of Sciences of the United States of America.

[27]  L. Brand,et al.  Resonance energy transfer: methods and applications. , 1994, Analytical biochemistry.

[28]  Robert E Campbell,et al.  Genetically encoded biosensors based on engineered fluorescent proteins. , 2009, Chemical Society reviews.

[29]  Igor L. Medintz,et al.  Chemoenzymatic Sensitization of DNA Photonic Wires Mediated through Quantum Dot Energy Transfer Relays , 2015 .

[30]  M. Kwak,et al.  Directed migration of cancer cells by the graded texture of the underlying matrix , 2016, Nature Materials.

[31]  R. Ziessel,et al.  Facile pathways to multichromophoric arrays based on a truxene platform , 2009 .

[32]  V. Didenko,et al.  Fluorescent energy transfer nucleic acid probes : designs and protocols , 2006 .

[33]  Igor L. Medintz,et al.  High‐performance genetic analysis using microfabricated capillary array electrophoresis microplates , 2001, Electrophoresis.

[34]  Igor L. Medintz,et al.  A triangular three-dye DNA switch capable of reconfigurable molecular logic , 2014 .

[35]  Igor L. Medintz,et al.  Biophotonic logic devices based on quantum dots and temporally-staggered Förster energy transfer relays. , 2013, Nanoscale.

[36]  Igor L. Medintz,et al.  Functionalizing nanoparticles with biological molecules: developing chemistries that facilitate nanotechnology. , 2013, Chemical reviews.

[37]  Igor L. Medintz,et al.  Assembling programmable FRET-based photonic networks using designer DNA scaffolds , 2014, Nature Communications.

[38]  Hieu Bui,et al.  DNA-Controlled Excitonic Switches , 2012, Nano letters.

[39]  Igor L. Medintz,et al.  High-performance multiplex SNP analysis of three hemochromatosis-related mutations with capillary array electrophoresis microplates. , 2001, Genome research.

[40]  B. Albinsson,et al.  Functionalized DNA Nanostructures for Light Harvesting and Charge Separation , 2012 .

[41]  Igor L. Medintz,et al.  FRET – Förster Resonance Energy Transfer , 2013 .

[42]  Igor L. Medintz,et al.  Quantum dots as simultaneous acceptors and donors in time-gated Förster resonance energy transfer relays: characterization and biosensing. , 2012, Journal of the American Chemical Society.

[43]  Igor L. Medintz,et al.  Materials for fluorescence resonance energy transfer analysis: beyond traditional donor-acceptor combinations. , 2006, Angewandte Chemie.

[44]  S. Jockusch,et al.  Design and characterization of two-dye and three-dye binary fluorescent probes for mRNA detection. , 2007, Tetrahedron.

[45]  Yuriy P. Bandera,et al.  Designing fluoroprobes through Förster resonance energy transfer: surface modification of nanoparticles through ``click'' chemistry , 2010 .

[46]  R. Nitschke,et al.  Quantum dots versus organic dyes as fluorescent labels , 2008, Nature Methods.

[47]  Chris Dwyer,et al.  Thousand‐Fold Increase in Optical Storage Density by Polychromatic Address Multiplexing on Self‐Assembled DNA Nanostructures , 2013, Advanced materials.

[48]  A. Pietraszewska-Bogiel,et al.  FRET microscopy: from principle to routine technology in cell biology , 2011, Journal of microscopy.

[49]  V. Klimov Spectral and dynamical properties of multiexcitons in semiconductor nanocrystals. , 2007, Annual review of physical chemistry.

[50]  N. Hildebrandt,et al.  Quantum dots: bright and versatile in vitro and in vivo fluorescence imaging biosensors. , 2015, Chemical Society reviews.

[51]  Kaibo Zheng,et al.  FRET-based small-molecule fluorescent probes: rational design and bioimaging applications. , 2013, Accounts of chemical research.