Nonparametric Estimation of Copulas for Time Series

We consider a nonparametric method to estimate copulas, i.e. functions linking joint distributions to their univariate margins. We derive the asymptotic properties of kernel estimators of copulas and their derivatives in the context of a multivariate stationary process satisfactory strong mixing conditions. Monte Carlo results are reported for a stationary vector autoregressive process of order one with Gaussian innovations. An empirical illustration containing a comparison with the independent, comotonic and Gaussian copulas is given for European and US stock index returns.

[1]  M. Wegkamp,et al.  Weak Convergence of Empirical Copula Processes , 2004 .

[2]  Martin Hoesli,et al.  What Factors Determine International Real Estate Security Returns , 2004 .

[3]  O. Scaillet Nonparametric Estimation and Sensitivity Analysis of Expected Shortfall , 2004 .

[4]  Dušan Isakov,et al.  How to Diversify Internationally? A Comparison of Conditional and Unconditional Asset Allocation Methods , 2003 .

[5]  Ernst-Ludwig von Thadden An incentive problem in the dynamic theory of banking , 2002 .

[6]  Markus Leippold,et al.  A Geometric Approach to Multiperiod Mean Variance Optimization of Assets and Liabilities , 2002 .

[7]  Michel Denuit,et al.  Nonparametric Tests for Positive Quadrant Dependence , 2002 .

[8]  Olivier de La Grandville,et al.  Immunization of Bond Portfolios: Some New Results , 2002 .

[9]  Jean-Luc Prigent,et al.  Weak Convergence of Hedging Strategies of Contingent Claims , 2002 .

[10]  Andrew J. Patton,et al.  Estimation of Copula Models for Time Series of Possibly Different Lengths , 2001 .

[11]  Peter Winker,et al.  Indirect Estimation of the Parameters of Agent Based Models of Financial Markets , 2001 .

[12]  Foort Hamelink,et al.  Country, Sector or Style: What Matters Most When Constructing Global Equity Portfolios? An Empirical Investigation from 1990-2001 , 2001 .

[13]  Andrew J. Patton Modelling Time-Varying Exchange Rate Dependence Using the Conditional Copula , 2001 .

[14]  F. Lhabitant,et al.  Assessing Market Risk for Hedge Funds and Hedge Funds Portfolios , 2001 .

[15]  Eric Jondeau,et al.  Conditional Dependency of Financial Series: An Application of Copulas , 2001 .

[16]  Olivier Scaillet,et al.  Sensitivity Analysis of Values at Risk , 2000 .

[17]  Manfred Gilli,et al.  A Heuristic Approach to Portfolio Optimization , 2000 .

[18]  John Odenckantz,et al.  Nonparametric Statistics for Stochastic Processes: Estimation and Prediction , 2000, Technometrics.

[19]  T. Fearnley,et al.  International CAPM with Regime Switching GARCH Parameters , 2000 .

[20]  Lorenzo Cappiello,et al.  Do Fixed Income Securities Also Show Asymmetric Effects in Conditional Second Moments? , 2000 .

[21]  Eric Bouyé,et al.  Copulas for Finance - A Reading Guide and Some Applications , 2000 .

[22]  Patrick Gagliardini,et al.  On the Informational Content of Changing Risk for Dynamic Asset Allocation , 2000 .

[23]  Luis M. Viceira,et al.  Dynamic Consumption and Portfolio Choice with Stochastic Volatility in Incomplete Markets , 1999 .

[24]  David X. Li On Default Correlation: A Copula Function Approach , 1999 .

[25]  K. Ghoudi,et al.  Non-Parametric Estimation of the Limit Dependence Function of Multivariate Extremes , 1999 .

[26]  Foort Hamelink,et al.  Systematic Patterns Before and After Large Price Changes: Evidence from High Frequency Data from the Paris Bourse , 1999 .

[27]  François-Serge Lhabitant,et al.  Enhancing Portfolio Performance Using Option Strategies: Why Beating the Market is Easy , 1998 .

[28]  Satishs Iyengar,et al.  Multivariate Models and Dependence Concepts , 1998 .

[29]  R. Nelsen An Introduction to Copulas , 1998 .

[30]  Kilani Ghoudi,et al.  Propriétés statistiques des copules de valeurs extrêmes bidimensionnelles , 1998 .

[31]  Jon A. Wellner,et al.  Weak Convergence and Empirical Processes: With Applications to Statistics , 1996 .

[32]  T. Louis,et al.  Inferences on the association parameter in copula models for bivariate survival data. , 1995, Biometrics.

[33]  C. Genest,et al.  A semiparametric estimation procedure of dependence parameters in multivariate families of distributions , 1995 .

[34]  C. Genest,et al.  Statistical Inference Procedures for Bivariate Archimedean Copulas , 1993 .

[35]  P. Robinson NONPARAMETRIC ESTIMATORS FOR TIME SERIES , 1983 .

[36]  A. Azzalini A note on the estimation of a distribution function and quantiles by a kernel method , 1981 .

[37]  Helmut R. Roessler Business Courses in German at the American Graduate School of International Management. , 1974 .

[38]  E. Lehmann Some Concepts of Dependence , 1966 .

[39]  P. Embrechts,et al.  Risk Management: Correlation and Dependence in Risk Management: Properties and Pitfalls , 2002 .

[40]  Alexander J. McNeil,et al.  Modelling dependent defaults , 2001 .

[41]  Angelo Ranaldo,et al.  Market Dynamics Around Public Information Arrivals Angelo , 2001 .

[42]  E. Rio,et al.  Théorie asymptotique de processus aléatoires faiblement dépendants , 2000 .

[43]  Pascal Botteron,et al.  Real Options as a Tool in the Decision to Relocate: An Application to the Banking Industry , 2000 .

[44]  Emiliano A. Valdez,et al.  Understanding Relationships Using Copulas , 1998 .

[45]  D. Tj⊘stheim Measures of Dependence and Tests of Independence , 1996 .

[46]  P. Doukhan Mixing: Properties and Examples , 1994 .

[47]  H. Bierens Advances in Econometrics: Kernel estimators of regression functions , 1987 .

[48]  M. Reavey,et al.  University of Lausanne , 1937, Nature.