A theoretical framework for backward error analysis on manifolds
暂无分享,去创建一个
[1] G. Benettin,et al. On the Hamiltonian interpolation of near-to-the identity symplectic mappings with application to symplectic integration algorithms , 1994 .
[2] R. Abraham,et al. Manifolds, Tensor Analysis, and Applications , 1983 .
[3] S. Reich. Numerical Integration of the Generatized Euler Equations , 1993 .
[4] F. Krogh,et al. Solving Ordinary Differential Equations , 2019, Programming for Computations - Python.
[5] G. Quispel,et al. Acta Numerica 2002: Splitting methods , 2002 .
[6] 大森 英樹,et al. Infinite-dimensional Lie groups , 1997 .
[7] Rudolf Schmid,et al. Geometry and Symmetry in Physics Infinite Dimensional Lie Groups with Applications to Mathematical Physics , 2022 .
[8] V. Arnold. Mathematical Methods of Classical Mechanics , 1974 .
[9] E. Celledoni. Lie group methods , 2009 .
[10] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[11] S. Reich. Backward Error Analysis for Numerical Integrators , 1999 .
[12] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[13] Richard S. Palais,et al. Foundations of global non-linear analysis , 1968 .
[14] J. Marsden,et al. Groups of diffeomorphisms and the motion of an incompressible fluid , 1970 .
[15] F. Pirani. MATHEMATICAL METHODS OF CLASSICAL MECHANICS (Graduate Texts in Mathematics, 60) , 1982 .
[16] Ernst Hairer,et al. The life-span of backward error analysis for numerical integrators , 1997 .
[17] G. Quispel,et al. Splitting methods , 2002, Acta Numerica.
[18] E. Cartan. Les groupes de transformations continus, infinis, simples , 1909 .
[19] John M. Lee. Introduction to Smooth Manifolds , 2002 .
[20] Sebastian Reich,et al. Symplectic partitioned Runge-Kutta methods for constrained Hamiltonian systems , 1996 .
[21] Andrew M. Stuart,et al. On the qualitative properties of modified equations , 1997 .
[22] Ernst Hairer,et al. Global modified Hamiltonian for constrained symplectic integrators , 2003, Numerische Mathematik.