Primitive tensors and directed hypergraphs

[1]  Charles R. Johnson,et al.  Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.

[2]  Liqun Qi,et al.  The eigenvectors associated with the zero eigenvalues of the Laplacian and signless Laplacian tensors of a uniform hypergraph , 2013, Discret. Appl. Math..

[3]  M. Ng,et al.  On the limiting probability distribution of a transition probability tensor , 2014 .

[4]  Tan Zhang,et al.  On Spectral Hypergraph Theory of the Adjacency Tensor , 2012, Graphs Comb..

[5]  Kung-Ching Chang,et al.  On the uniqueness and non-uniqueness of the positive Z-eigenvector for transition probability tensors , 2013 .

[6]  L. Qi,et al.  Circulant Tensors with Applications to Spectral Hypergraph Theory and Stochastic Process , 2013, 1312.2752.

[7]  Jinshan Xie,et al.  On the Z‐eigenvalues of the signless Laplacian tensor for an even uniform hypergraph , 2013, Numer. Linear Algebra Appl..

[8]  Guoyin Li,et al.  The Z‐eigenvalues of a symmetric tensor and its application to spectral hypergraph theory , 2013, Numer. Linear Algebra Appl..

[9]  Michael K. Ng,et al.  The perturbation bound for the Perron vector of a transition probability tensor , 2013, Numer. Linear Algebra Appl..

[10]  L. Qi H$^+$-Eigenvalues of Laplacian and Signless Laplacian Tensors , 2013, 1303.2186.

[11]  Jinshan Xie,et al.  H-Eigenvalues of signless Laplacian tensor for an even uniform hypergraph , 2013 .

[12]  S. Gaubert,et al.  Perron–Frobenius theorem for nonnegative multilinear forms and extensions , 2009, 0905.1626.

[13]  Liqun Qi,et al.  Algebraic connectivity of an even uniform hypergraph , 2012, J. Comb. Optim..

[14]  Yunming Ye,et al.  HAR: Hub, Authority and Relevance Scores in Multi-Relational Data for Query Search , 2012, SDM.

[15]  Yunming Ye,et al.  MultiRank: co-ranking for objects and relations in multi-relational data , 2011, KDD.

[16]  Tan Zhang,et al.  Primitivity, the Convergence of the NQZ Method, and the Largest Eigenvalue for Nonnegative Tensors , 2011, SIAM Journal on Matrix Analysis and Applications.

[17]  Joshua N. Cooper,et al.  Spectra of Uniform Hypergraphs , 2011, 1106.4856.

[18]  Qingzhi Yang,et al.  Further Results for Perron-Frobenius Theorem for Nonnegative Tensors , 2010, SIAM J. Matrix Anal. Appl..

[19]  K. J. Pearson Primitive tensors and convergence of an iterative process for the eigenvalues of a primitive tensor , 2010 .

[20]  Marcello Pelillo,et al.  New Bounds on the Clique Number of Graphs Based on Spectral Hypergraph Theory , 2009, LION.

[21]  Michael K. Ng,et al.  Finding the Largest Eigenvalue of a Nonnegative Tensor , 2009, SIAM J. Matrix Anal. Appl..

[22]  Elizabeth L. Wilmer,et al.  Markov Chains and Mixing Times , 2008 .

[23]  Kung-Ching Chang,et al.  Perron-Frobenius theorem for nonnegative tensors , 2008 .

[24]  Daniele Frigioni,et al.  Directed Hypergraphs: Problems, Algorithmic Results, and a Novel Decremental Approach , 2001, ICTCS.

[25]  T. Raghavan,et al.  Nonnegative Matrices and Applications , 1997 .

[26]  Robert J. Plemmons,et al.  Nonnegative Matrices in the Mathematical Sciences , 1979, Classics in Applied Mathematics.

[27]  Giorgio Gallo,et al.  Directed Hypergraphs and Applications , 1993, Discret. Appl. Math..

[28]  Giorgio Ausiello,et al.  Minimal Representation of Directed Hypergraphs , 1986, SIAM J. Comput..

[29]  Giorgio Ausiello,et al.  Graph Algorithms for Functional Dependency Manipulation , 1983, JACM.