Control Design of Uncertain Quantum Systems With Fuzzy Estimators

An approach of control design using fuzzy estimators (FEs) is proposed for quantum systems with uncertainties. Two types of quantum control problems are considered: 1) control of a pure-state quantum system in the presence of uncertainties and 2) control design of quantum systems with initial mixed states and uncertainties. For the first type of tasks, a partial feedback control scheme with an FE is presented to design controllers. In this scheme, an FE is trained to estimate the quantum state for feedback control of a quantum system, and controlled projective measurement is used to assist in controlling the system. For the second type of quantum control tasks, a probabilistic fuzzy estimator (PFE) is trained to estimate the quantum state for control design of a quantum system with an initial mixed state, and a corresponding control algorithm is proposed to design a control law that drives the system from the mixed state to a target pure state. Two examples of two-spin-1/2 systems are also presented and analyzed to demonstrate the process of control design and potential applications of the proposed approach.

[1]  Timothy F. Havel,et al.  Robust control of quantum information , 2003, quant-ph/0307062.

[2]  Ramon van Handel,et al.  Feedback control of quantum state reduction , 2005, IEEE Transactions on Automatic Control.

[3]  G. Feng,et al.  A Survey on Analysis and Design of Model-Based Fuzzy Control Systems , 2006, IEEE Transactions on Fuzzy Systems.

[4]  Ian R. Petersen,et al.  Controllability of quantum systems with switching control , 2011, Int. J. Control.

[5]  Tzyh Jong Tarn,et al.  Incoherent Control of Quantum Systems With Wavefunction-Controllable Subspaces via Quantum Reinforcement Learning , 2008, IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics).

[6]  Ian R. Petersen,et al.  Quantum control theory and applications: A survey , 2009, IET Control Theory & Applications.

[7]  Hidenori Kimura,et al.  Transfer function approach to quantum control-part I: Dynamics of quantum feedback systems , 2003, IEEE Trans. Autom. Control..

[8]  Shaoyuan Li,et al.  A Three-Dimensional Fuzzy Control Methodology for a Class of Distributed Parameter Systems , 2007, IEEE Transactions on Fuzzy Systems.

[9]  Claudio Altafini,et al.  Feedback Stabilization of Isospectral Control Systems on Complex Flag Manifolds: Application to Quantum Ensembles , 2007, IEEE Transactions on Automatic Control.

[10]  Ian R. Petersen,et al.  Control of Linear Quantum Stochastic Systems , 2007 .

[11]  Jr-Shin Li,et al.  Ensemble Control of Bloch Equations , 2009, IEEE Transactions on Automatic Control.

[12]  Jing Zhang,et al.  Protecting Coherence and Entanglement by Quantum Feedback Controls , 2010, IEEE Transactions on Automatic Control.

[13]  Hideo Mabuchi,et al.  Coherent-feedback quantum control with a dynamic compensator , 2008, 0803.2007.

[14]  Zhi Liu,et al.  A Probabilistic Neural-Fuzzy Learning System for Stochastic Modeling , 2008, IEEE Transactions on Fuzzy Systems.

[15]  Stefano Mancini,et al.  Bayesian feedback versus Markovian feedback in a two-level atom , 2002 .

[16]  S. Lloyd,et al.  Coherent quantum feedback , 2000 .

[17]  Andrew J. Landahl,et al.  Continuous quantum error correction via quantum feedback control , 2002 .

[18]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[19]  Kompa,et al.  Whither the future of controlling quantum phenomena? , 2000, Science.

[20]  Han-Xiong Li,et al.  Spatially Constrained Fuzzy-Clustering-Based Sensor Placement for Spatiotemporal Fuzzy-Control System , 2010, IEEE Transactions on Fuzzy Systems.

[21]  Spyros G. Tzafestas,et al.  Parallelization of a fuzzy control algorithm using quantum computation , 2002, IEEE Trans. Fuzzy Syst..

[22]  James Lam,et al.  Robust incoherent control of qubit systems via switching and optimisation , 2010, Int. J. Control.

[23]  I. Petersen,et al.  Sliding mode control of quantum systems , 2009, 0911.0062.

[24]  Lorenza Viola,et al.  Analysis and synthesis of attractive quantum Markovian dynamics , 2008, Autom..

[25]  M.R. James,et al.  $H^{\infty}$ Control of Linear Quantum Stochastic Systems , 2008, IEEE Transactions on Automatic Control.

[26]  Uzay Kaymak,et al.  Systems Control With Generalized Probabilistic Fuzzy-Reinforcement Learning , 2011, IEEE Transactions on Fuzzy Systems.

[27]  James Lam,et al.  Rapid incoherent control of quantum systems based on continuous measurements and reference model , 2009 .

[28]  Bo Qi,et al.  Is measurement-based feedback still better for quantum control systems? , 2010, Syst. Control. Lett..

[29]  Zhi Liu,et al.  A probabilistic fuzzy logic system for modeling and control , 2005, IEEE Transactions on Fuzzy Systems.

[30]  Ian R. Petersen,et al.  Coherent quantum LQG control , 2007, Autom..

[31]  K. Jacobs,et al.  FEEDBACK CONTROL OF QUANTUM SYSTEMS USING CONTINUOUS STATE ESTIMATION , 1999 .

[32]  David W. Lewis,et al.  Matrix theory , 1991 .

[33]  Mazyar Mirrahimi,et al.  Stabilizing Feedback Controls for Quantum Systems , 2005, SIAM J. Control. Optim..

[34]  Naoki Yamamoto,et al.  Quantum Risk-Sensitive Estimation and Robustness , 2007, IEEE Transactions on Automatic Control.

[35]  Daoyi Dong,et al.  Incoherent control of locally controllable quantum systems. , 2008, The Journal of chemical physics.

[36]  Herschel Rabitz,et al.  Quantum wavefunction controllability , 2001 .

[37]  James Lam,et al.  Partial feedback control of quantum systems using probabilistic fuzzy estimator , 2009, Proceedings of the 48h IEEE Conference on Decision and Control (CDC) held jointly with 2009 28th Chinese Control Conference.

[38]  G. Milburn,et al.  Quantum Measurement and Control , 2009 .