Fabrication of triboelectric nanogenerators based on electrospun polyimide nanofibers membrane

[1]  Hui Zhang,et al.  Study on Photocatalytic Antibacterial and Sustained-Release Properties of Cellulose/TiO2/β-CD Composite Hydrogel , 2019, Journal of Nanomaterials.

[2]  W. Han,et al.  Polyimide/Graphene Nanocomposite Foam‐Based Wind‐Driven Triboelectric Nanogenerator for Self‐Powered Pressure Sensor , 2019, Advanced Materials Technologies.

[3]  Yunlong Zi,et al.  A novel triboelectric nanogenerator based on electrospun polyvinylidene fluoride nanofibers for effective acoustic energy harvesting and self-powered multifunctional sensing , 2019, Nano Energy.

[4]  Shih-Jung Liu,et al.  Determination of Electrospinning Parameters’ Strength in Poly(D,L)-lactide-co-glycolide Micro/Nanofiber Diameter Tailoring , 2019, Journal of Nanomaterials.

[5]  Jihoon Chung,et al.  A Deformable Foam-Layered Triboelectric Tactile Sensor with Adjustable Dynamic Range , 2019, International Journal of Precision Engineering and Manufacturing-Green Technology.

[6]  Xiaoya Liu,et al.  Preparation of polyimide/amino-modified reduced graphene oxide composite matrix and its application in UV-cured functionalized films , 2018, Progress in Organic Coatings.

[7]  Kaushik Parida,et al.  Skin-touch-actuated textile-based triboelectric nanogenerator with black phosphorus for durable biomechanical energy harvesting , 2018, Nature Communications.

[8]  S. Jang,et al.  Rapid Fabrication of Microporous BaTiO3/PDMS Nanocomposites for Triboelectric Nanogenerators through One-step Microwave Irradiation , 2018, Scientific Reports.

[9]  H. Fong,et al.  High-performance polyimide nanofibers reinforced polyimide nanocomposite films fabricated by co-electrospinning followed by hot-pressing , 2018, Journal of Applied Polymer Science.

[10]  Xiaoqing Zhang,et al.  Ferroelectret nanogenerator with large transverse piezoelectric activity , 2018, Nano Energy.

[11]  Gaigai Duan,et al.  Molecular orientation in aligned electrospun polyimide nanofibers by polarized FT-IR spectroscopy. , 2018, Spectrochimica acta. Part A, Molecular and biomolecular spectroscopy.

[12]  Lih-Sheng Turng,et al.  High-performance flexible triboelectric nanogenerator based on porous aerogels and electrospun nanofibers for energy harvesting and sensitive self-powered sensing , 2018, Nano Energy.

[13]  Zhong Lin Wang,et al.  Thermal–Electric Nanogenerator Based on the Electrokinetic Effect in Porous Carbon Film , 2018 .

[14]  Chaobo Huang,et al.  Temperature-induced molecular orientation and mechanical properties of single electrospun polyimide nanofiber , 2018 .

[15]  Zhanhu Guo,et al.  Significantly enhanced and precisely modeled thermal conductivity in polyimide nanocomposites with chemically modified graphene via in situ polymerization and electrospinning-hot press technology , 2018 .

[16]  Jose M. Lagaron,et al.  The influence of electrospinning parameters and solvent selection on the morphology and diameter of polyimide nanofibers , 2018 .

[17]  Kaushik Parida,et al.  Core-shell nanofiber mats for tactile pressure sensor and nanogenerator applications , 2018 .

[18]  S. Jang,et al.  Simple and rapid fabrication of pencil-on-paper triboelectric nanogenerators with enhanced electrical performance. , 2017, Nanoscale.

[19]  Je Hoon Oh,et al.  Fabrication of highly sensitive capacitive pressure sensors with electrospun polymer nanofibers , 2017 .

[20]  Bin Ding,et al.  Nanofibrous membrane constructed wearable triboelectric nanogenerator for high performance biomechanical energy harvesting , 2017 .

[21]  Huiqing Fan,et al.  Magnetic force driven noncontact electromagnetic-triboelectric hybrid nanogenerator for scavenging biomechanical energy , 2017 .

[22]  M. Chan-Park,et al.  Synthesis of polycaprolactone-polyimide-polycaprolactone triblock copolymers via a 2-step sequential copolymerization and their application as carbon nanotube dispersants , 2017 .

[23]  S. Bahrami,et al.  Fabrication of curcumin-loaded gum tragacanth/poly(vinyl alcohol) nanofibers with optimized electrospinning parameters , 2017 .

[24]  Chunsheng Yang,et al.  A flexible triboelectric-piezoelectric hybrid nanogenerator based on P(VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices , 2016, Scientific Reports.

[25]  S. Jang,et al.  Honeycomb-like nanofiber based triboelectric nanogenerator using self-assembled electrospun poly(vinylidene fluoride-co-trifluoroethylene) nanofibers , 2016 .

[26]  S. Jang,et al.  Erratum to: Influence of Processing Conditions and Material Properties on Electrohydrodynamic Direct Patterning of a Polymer Solution , 2016, Journal of Electronic Materials.

[27]  Haofei Shi,et al.  Enhancing Performance of Triboelectric Nanogenerator by Filling High Dielectric Nanoparticles into Sponge PDMS Film. , 2016, ACS applied materials & interfaces.

[28]  S. Haider,et al.  A comprehensive review summarizing the effect of electrospinning parameters and potential applications of nanofibers in biomedical and biotechnology , 2015, Arabian Journal of Chemistry.

[29]  Meifang Zhu,et al.  Human walking-driven wearable all-fiber triboelectric nanogenerator containing electrospun polyvinylidene fluoride piezoelectric nanofibers , 2015 .

[30]  Guang Zhu,et al.  Triboelectric nanogenerators as a new energy technology: From fundamentals, devices, to applications , 2015 .

[31]  Yannan Xie,et al.  Case-encapsulated triboelectric nanogenerator for harvesting energy from reciprocating sliding motion. , 2014, ACS nano.

[32]  Zhong Lin Wang,et al.  Theoretical study of contact-mode triboelectric nanogenerators as an effective power source , 2013 .

[33]  Zhong Lin Wang,et al.  Toward large-scale energy harvesting by a nanoparticle-enhanced triboelectric nanogenerator. , 2013, Nano letters.

[34]  B. Smarsly,et al.  Metal-organic framework nanofibers via electrospinning. , 2011, Chemical communications.

[35]  Gary E. Wnek,et al.  Role of chain entanglements on fiber formation during electrospinning of polymer solutions: Good solvent, non-specific polymer-polymer interaction limit , 2005 .

[36]  Burak Erman,et al.  Electrospinning of polyurethane fibers , 2002 .

[37]  Tae Yun Kim,et al.  Boosting Power‐Generating Performance of Triboelectric Nanogenerators via Artificial Control of Ferroelectric Polarization and Dielectric Properties , 2017 .

[38]  Muhammad Mustafa Hussain,et al.  Paper-based origami flexible and foldable thermoelectric nanogenerator , 2017 .

[39]  S. Jang,et al.  Influence of Processing Conditions and Material Properties on Electrohydrodynamic Direct Patterning of a Polymer Solution , 2015, Journal of Electronic Materials.