Visualization of Crime Trajectories with Self-Organizing Maps : A Case Study on Evaluating the Impact of Hurricanes on Spatio-Temporal Crime Hotspots
暂无分享,去创建一个
[1] Bernd Fritzke. Growing Grid — a self-organizing network with constant neighborhood range and adaptation strength , 1995, Neural Processing Letters.
[2] R. Roth,et al. A user-centered approach for designing and developing spatiotemporal crime analysis tools , 2010 .
[3] W. F. Athas,et al. Evaluating cluster alarms: a space-time scan statistic and brain cancer in Los Alamos, New Mexico. , 1998, American journal of public health.
[4] Tomoki Nakaya,et al. Visualising Crime Clusters in a Space‐time Cube: An Exploratory Data‐analysis Approach Using Space‐time Kernel Density Estimation and Scan Statistics , 2010, Trans. GIS.
[5] Marco Helbich,et al. The Impact of Hurricanes on Crime: A Spatio-Temporal Analysis in the City of Houston, Texas , 2011 .
[6] Jiawei Han,et al. Geographic data mining and knowledge discovery: An overview , 2009 .
[7] Gary Higgs,et al. Visualising space and time in crime patterns: A comparison of methods , 2007, Comput. Environ. Urban Syst..
[8] André Skupin,et al. Visualizing Demographic Trajectories with Self-Organizing Maps , 2005, GeoInformatica.
[9] Daniel A. Keim,et al. Visual Analytics: Scope and Challenges , 2008, Visual Data Mining.
[10] Daniel A. Keim,et al. Space‐in‐Time and Time‐in‐Space Self‐Organizing Maps for Exploring Spatiotemporal Patterns , 2010, Comput. Graph. Forum.
[11] Michael Leitner,et al. The Impact of Hurricane Katrina on Reported Crimes in Louisiana: A Spatial and Temporal Analysis , 2011 .
[12] A. Skupin,et al. Self-organising maps : applications in geographic information science , 2008 .
[13] S. Chainey,et al. GIS and Crime Mapping , 2005 .