Neurophysiologische Parameter zum Sprachverstehen von Patienten mit Cochlea-Implantaten

Zusammenfassung Hintergrund Cochlea-Implantate (CI) stellen heutzutage die Behandlungsmethode der Wahl für schwerhörige bis vollständig ertaubte PatientInnen dar. Während für gehörlose PatientInnen bereits die Wiederherstellung eines basalen Höreindrucks einen enormen Erfolg darstellt, ist das Treffen von Vorhersagen für PatientInnen mit einem Restgehör oftmals komplexer. Im Rahmen dieser Studie soll anhand von erhobenen Daten der neurophysiologische Einfluss von objektiven Parametern beim klassifizierten Sprachverstehen (SPV) von CI-Trägern aufgezeigt werden. Material und Methoden Insgesamt wurden 52 PatientInnen mit 65 Ohren im Alter von 18–80 Jahren eingeschlossen. Als objektive Parameter wurden ECAP-Schwellen und Impedanzwerte und als subjektive Parameter die T- und C/M-Werte genutzt. Klassifiziert wurden die Ergebnisse über die Performance des SPV. Ergebnisse Die Unterschiede zwischen den Gruppen (Alter, Tragedauer) waren nicht signifikant, wobei das erreichte Hörvermögen bei 500 Hz signifikant mit dem Mehrsilbertest korrelierte. Die Elektrodenimpedanzen korrelierten im Mittel mit dem SPV bei gleichbleibender Variabilität. Die Verteilungen von objektiven und subjektiven Parametern zeigten zum Teil signifikante Unterschiede. Viele Verteilungen besaßen dabei signifikant auffällige Unterschiede zur Normalverteilung. Dementsprechend waren die Überlappungsbereiche der Signifikanzniveaus sehr eng begrenzt. Schlussfolgerungen Höhere Impedanzen und nicht korrekt angepasste T-Werte ergaben ein schlechteres SPV. Die Verhältnisse von C/M-Werten zu den ECAP-Schwellen zeigten sich als wesentlich für ein gutes SPV.

[1]  G. Malliaras,et al.  Electrochemical impedance spectroscopy of human cochleas for modeling cochlear implant electrical stimulus spread , 2020, APL materials.

[2]  U. Hoppe,et al.  Cochlear Implantation in Candidates With Moderate‐to‐Severe Hearing Loss and Poor Speech Perception , 2020, The Laryngoscope.

[3]  S. T. Goverts,et al.  Relationship Between Speech Recognition in Quiet and Noise and Fitting Parameters, Impedances and ECAP Thresholds in Adult Cochlear Implant Users , 2019, Ear and hearing.

[4]  A. Otero,et al.  Patienten Outcome bei ambulanter Therapie nach Cochlea-Implantation im Hinblick auf audiologische Ergebnisse und Angaben über den Inhalt der logopädischen Therapie , 2019 .

[5]  U. Hoppe,et al.  [Maximum monosyllabic score as a predictor for cochlear implant outcome]. , 2019, HNO.

[6]  Thomas Lenarz,et al.  Cochlear implant – state of the art , 2018, GMS current topics in otorhinolaryngology, head and neck surgery.

[7]  D. Sladen,et al.  Cochlear Implant Associated Labyrinthitis: A Previously Unrecognized Phenomenon With a Distinct Clinical and Electrophysiological Impedance Pattern. , 2017, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[8]  H. Hessel,et al.  [Loudness optimized registration of compound action potential in cochlear implant recipients]. , 2017, Laryngo- rhino- otologie.

[9]  U. Hoppe,et al.  Speech Perception and Information-Carrying Capacity for Hearing Aid Users of Different Ages , 2016, Audiology and Neurotology.

[10]  X. Xi,et al.  Effects of cochlear implant surgical technique on post-operative electrode impedance , 2016, Acta oto-laryngologica.

[11]  U. Hoppe,et al.  Speech Perception of Elderly Cochlear Implant Users Under Different Noise Conditions , 2015, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[12]  J. Frijns,et al.  Population-Based Prediction of Fitting Levels for Individual Cochlear Implant Recipients , 2014, Audiology and Neurotology.

[13]  M. P. Moeller,et al.  Performance Outcomes for Borderline Cochlear Implant Recipients With Substantial Preoperative Residual Hearing , 2014, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[14]  M. Praetorius,et al.  Neues aus der Hörforschung , 2014, HNO.

[15]  M. Liberman,et al.  Noise-induced cochlear neuropathy is selective for fibers with low spontaneous rates. , 2013, Journal of neurophysiology.

[16]  Karen M Mispagel,et al.  Factors Affecting Open-Set Word Recognition in Adults With Cochlear Implants , 2013, Ear and hearing.

[17]  L. De Raeve,et al.  Accessibility to cochlear implants in Belgium: State of the art on selection, reimbursement, habilitation, and outcomes in children and adults , 2013, Cochlear implants international.

[18]  A. Beynon,et al.  Factors Affecting Auditory Performance of Postlinguistically Deaf Adults Using Cochlear Implants: An Update with 2251 Patients , 2012, Audiology and Neurotology.

[19]  H. Francis,et al.  Cochlear Implant Rehabilitation in Older Adults: Literature Review and Proposal of a Conceptual Framework , 2012, Journal of the American Geriatrics Society.

[20]  B. Mazurek,et al.  Elderly patients benefit from cochlear implantation regarding auditory rehabilitation, quality of life, tinnitus, and stress , 2012, The Laryngoscope.

[21]  Jill B Firszt,et al.  Optimizing the perception of soft speech and speech in noise with the Advanced Bionics cochlear implant system , 2011, International journal of audiology.

[22]  René H. Gifford,et al.  Evidence for the Expansion of Adult Cochlear Implant Candidacy , 2010, Ear and hearing.

[23]  B. Papsin,et al.  Packing of the Cochleostomy Site Affects Auditory Nerve Response Thresholds in Precurved Off-Stylet Cochlear Implants , 2010, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[24]  M. Liberman,et al.  Adding Insult to Injury: Cochlear Nerve Degeneration after “Temporary” Noise-Induced Hearing Loss , 2009, The Journal of Neuroscience.

[25]  J. Fayad,et al.  Histopathologic Assessment of Fibrosis and nEw Bone Formation in Implanted Human Temporal Bones Using 3D Reconstruction , 2009, Otolaryngology Head & Neck Surgery.

[26]  Sarah F. Poissant,et al.  Impact of cochlear implantation on speech understanding, depression, and loneliness in the elderly. , 2008, Journal of otolaryngology - head & neck surgery = Le Journal d'oto-rhino-laryngologie et de chirurgie cervico-faciale.

[27]  M. Dorman,et al.  Performance of Patients Using Different Cochlear Implant Systems: Effects of Input Dynamic Range , 2007, Ear and hearing.

[28]  D. Mawman,et al.  Cochlear implant outcomes and quality of life in the elderly: Manchester experience over 13 years 1 , 2006 .

[29]  R T Ramsden,et al.  Cochlear implant outcomes and quality of life in the elderly: Manchester experience over 13 years. , 2006, Clinical otolaryngology : official journal of ENT-UK ; official journal of Netherlands Society for Oto-Rhino-Laryngology & Cervico-Facial Surgery.

[30]  F B van der Beek,et al.  Clinical Evaluation of the Clarion CII HiFocus 1 with and Without Positioner , 2005, Ear and hearing.

[31]  E. Kang,et al.  Speech Perception after Cochlear Implantation over a 4-Year Time Period , 2003, Acta oto-laryngologica.

[32]  Edward H. Overstreet,et al.  Neural Response Imaging : Measuring Auditory-Nerve Responses from the Cochlea with the HiResolution TM Bionic Ear System , 2003 .

[33]  N. Kraus,et al.  Neurophysiology of Cochlear Implant Users II: Comparison Among Speech Perception, Dynamic Range, and Physiological Measures , 2002, Ear and hearing.

[34]  Fan-Gang Zeng,et al.  Speech dynamic range and its effect on cochlear implant performance. , 2002, The Journal of the Acoustical Society of America.

[35]  M. J. Osberger,et al.  Adult Cochlear Implant Patient Performance with Evolving Electrode Technology , 2001, Otology & neurotology : official publication of the American Otological Society, American Neurotology Society [and] European Academy of Otology and Neurotology.

[36]  P J Abbas,et al.  The Relationship Between EAP and EABR Thresholds and Levels Used to Program the Nucleus 24 Speech Processor: Data from Adults , 2000, Ear and hearing.

[37]  P C Loizou,et al.  The Effect of Reduced Dynamic Range on Speech Understanding: Implications for Patients with Cochlear Implants , 2000, Ear and hearing.

[38]  G M Clark,et al.  Intracochlear factors contributing to psychophysical percepts following cochlear implantation. , 1998, Acta oto-laryngologica.

[39]  G M Clark,et al.  Cochlear implantation: osteoneogenesis, electrode-tissue impedance, and residual hearing. , 1995, The Annals of otology, rhinology & laryngology. Supplement.

[40]  M. Liberman Central projections of auditory nerve fibers of differing spontaneous rate, II: Posteroventral and dorsal cochlear nuclei , 1993, The Journal of comparative neurology.

[41]  Kiyoshi Honda,et al.  Factors Contributing to Phoneme Recognition Ability of Users of the 22-Channel Cochlear Implant System , 1992, The Annals of otology, rhinology, and laryngology.

[42]  M. Liberman Central projections of auditory‐nerve fibers of differing spontaneous rate. I. Anteroventral cochlear nucleus , 1991, The Journal of comparative neurology.