Times of impacts that deliver samples of Vesta to Earth derived from ultrasensitive 81Kr-Kr cosmic ray exposure age analysis of Eucrites

[1]  I. Strashnov,et al.  A resonance ionization time of flight mass spectrometer with a cryogenic sample concentrator for isotopic analysis of krypton from extraterrestrial samples , 2011 .

[2]  I. Strashnov,et al.  Controlling isotopic effects in the resonance ionisation mass spectrometry of krypton , 2010 .

[3]  E. Scott,et al.  Oxygen isotopic constraints on the origin and parent bodies of eucrites, diogenites, and howardites , 2009 .

[4]  Terence P. McClafferty,et al.  An Anomalous Basaltic Meteorite from the Innermost Main Belt , 2009, Science.

[5]  I. Strashnov,et al.  Hyperfine structure induced isotopic effects in krypton resonance ionization mass spectrometry , 2009 .

[6]  I. Strashnov,et al.  Tunable VUV light generation for resonance ionization mass spectrometry of Krypton , 2009 .

[7]  A. Jambon,et al.  Widespread magma oceans on asteroidal bodies in the early Solar System , 2005, Nature.

[8]  H. Palme,et al.  Oxygen isotope evidence for rapid mixing of the HED meteorite parent body , 2004 .

[9]  E. Scott,et al.  Classification of Meteorites , 2003 .

[10]  David R. Anderson,et al.  Model selection and multimodel inference : a practical information-theoretic approach , 2003 .

[11]  M. Drake Presidential Address: Presented 2000 August 28, Chicago, Illinois, USA The eucrite/Vesta story , 2001 .

[12]  P. Farinella,et al.  Efficient delivery of meteorites to the Earth from a wide range of asteroid parent bodies , 2000, Nature.

[13]  R. Middleton,et al.  Light noble gases and cosmogenic radionuclides in Estherville, Budulan, and other mesosiderites: Implications for exposure histories and production rates , 2000 .

[14]  R. Wieler,et al.  Primordial noble gases in “phase Q” in carbonaceous and ordinary chondrites studied by closed‐system stepped etching , 2000 .

[15]  Bhandari,et al.  26Al in eucrite piplia kalan: plausible heat source and formation chronology , 1999, Science.

[16]  Y. Miura,et al.  NOBLE GASES, 81KR-KR EXPOSURE AGES AND 244PU-XE AGES OF SIX EUCRITES, BEREBA, BINDA, CAMEL DONGA, JUVINAS, MILLBILLILLIE, AND STANNERN , 1998 .

[17]  J. Papike COMPARATIVE PLANETARY MINERALOGY : CHEMISTRY OF MELT-DERIVED PYROXENE, FELDSPAR, AND OLIVINE , 1998 .

[18]  C. Baglin Nuclear data sheets for A = 81 , 1996 .

[19]  G. Huss,et al.  The “normal planetary” noble gas component in primitive chondrites: Compositions, carrier, and metamorphic history , 1996 .

[20]  J. Gilmour,et al.  RELAX: An ultrasensitive, resonance ionization mass spectrometer for xenon , 1994 .

[21]  R. Binzel,et al.  Chips off of Asteroid 4 Vesta: Evidence for the Parent Body of Basaltic Achondrite Meteorites , 1993, Science.

[22]  Y. Miura,et al.  81Kr terrestrial ages and grouping of Yamato eucrites. , 1993 .

[23]  R. Wieler,et al.  Characterisation of Q-gases and other noble gas components in the Murchison meteorite , 1992 .

[24]  J. Gilmour,et al.  A resonance ionization mass spectrometer for xenon , 1991 .

[25]  O. Eugster Cosmic-ray production rates for 3He, 21Ne, 38Ar, 83Kr, and 126Xe in chondrites based on 81Kr-Kr exposure ages , 1988 .

[26]  R. Reedy,et al.  Terrestrial 81Kr-Kr ages of Antarctic meteorites , 1986 .

[27]  H. Mori,et al.  The diogenite‐eucrite links and the crystallization history of a crust of their parent body , 1985 .

[28]  J. Wisdom,et al.  Chaotic behavior and the origin of the 3/1 Kirkwood gap , 1983 .

[29]  F. Podosek,et al.  Noble gas retention chronologies for the St Séverin meteorite , 1981 .

[30]  K. Nishiizumi,et al.  Cosmic ray exposure ages of chondrites, pre-irradiation and constancy of cosmic ray flux in the past , 1980 .

[31]  C. Baglin Nuclear Data Sheets for A = 150 , 1976 .

[32]  F. Begemann,et al.  Rare gases and 36Cl in stony-iron meteorites: cosmogenic elemental production rates, exposure ages, diffusion losses and thermal histories , 1976 .

[33]  R. Lewis Rare gases in separated whitlockite from the St. Severin chondrite: xenon and krypton from fission of extinct 244Pu , 1975 .

[34]  H. Akaike A new look at the statistical model identification , 1974 .

[35]  C. Hohenberg,et al.  Cosmic-ray exposure history at the Apollo 16 and other lunar sites. Lunar surface dynamics , 1974 .

[36]  L. Nyquist,et al.  He, Ne and Ar in chondritic Ni-Fe as irradiation hardness sensors. , 1973 .

[37]  T V Johnson,et al.  Asteroid Vesta: Spectral Reflectivity and Compositional Implications , 1970, Science.

[38]  J. Geiss,et al.  The isotopic composition of krypton in unequilibrated and gas rich chondrites , 1967 .

[39]  K. Keil,et al.  THE GENESIS OF THE LIGHT-DARK STRUCTURE IN THE PANTAR AND KAPOETA STONE METEORITES , 1963 .

[40]  I. Mclaren,et al.  TIME-OF-FLIGHT MASS SPECTROMETER WITH IMPROVED RESOLUTION , 1955 .

[41]  A. Nier A redetermination of the relative abundances of the isotopes of neon, krypton, rubidium, xenon and mercury , 1950 .

[42]  F. Begemann,et al.  Cosmogenic and fissiogenic noble gases and 81Kr-Kr exposure age clusters of eucrites , 1996 .

[43]  O. Eugster,et al.  Common asteroid break-up events of eucrites, diogenites, and howardites and cosmic-ray production rates for noble gases in achondrites , 1995 .

[44]  H. Wänke,et al.  Halogens in meteorites and their primordial abundances , 1979 .

[45]  D. Yuhas,et al.  Cosmic-ray exposure history of North Ray and South Ray material , 1973 .

[46]  K. Marti MASS-SPECTROMETRIC DETECTION OF COSMIC-RAY-PRODUCED $sup 81$Kr IN METEORITES AND THE POSSIBILITY OF Kr--Kr DATING. , 1967 .