High gradient performance and quench behavior of a verification cryomodule for a high energy continuous wave linear accelerator
暂无分享,去创建一个
B. Chase | G. Hays | C. Adolphsen | T. Arkan | A. Grassellino | J. Reid | J. Fuerst | A. Benwell | Y. Pischalnikov | C. Grimm | S. Posen | M. Checchin | R. Legg | L. Doolittle | E. Harms | B. Hartsell | M. Martinello | D. Gonnella | J. Maniscalco | N. Solyak | J. Nelson | T. Khabiboulline | A. Cravatta | S. Aderhold | D. Bafia | D. Bice | C. Contreras-Martinez | B. Hansen | J. Holzbauer | S. Hoobler | J. Kaluzny | M. Kučera | D. Lambert | F. Lewis | J. Makara | H. Maniar | S. Paiagua | P. Prieto | M. Ross | C. Serrano | A. Syed | D. Sun | G. Tatkowski | R. Wang | M. White | L. Zacarias | D. Bafia
[1] A. Grassellino,et al. Effect of interstitial impurities on the field dependent microwave surface resistance of niobium , 2016, 1606.04174.
[2] A. Romanenko,et al. Ultra-high quality factors in superconducting niobium cavities in ambient magnetic fields up to 190 mG , 2014, 1410.7877.
[3] A. Grassellino,et al. Dependence of the residual surface resistance of superconducting radio frequency cavities on the cooling dynamics around Tc , 2014, 1401.7747.
[4] A. Rowe,et al. Nitrogen and argon doping of niobium for superconducting radio frequency cavities: a pathway to highly efficient accelerating structures , 2013, 1306.0288.